Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

A TiO₂/Nb₂O₅·nH₂O Heterojunction Catalyst for Conversion of Glucose into

5-Hydroxymethylfurfural in Water

Fangmin Huang,^{1,2,*} Tianying Jiang,¹ Xincheng Xu,¹ Lu Chen,² Gabor Laurenczy,² Zhaofu Fei,² and

Paul J. Dyson^{2,*}

 ¹ School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, People's Republic of China.
² Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland.

Estimation of the water content in TiO₂/Nb₂O₅·nH₂O (0.68)

According to the weight proportion of chemical bonding water in $TiO_2/Nb_2O_5 \cdot nH_2O$ (0.68) and the molar ratio of Ti:Nb, the value of n in $TiO_2/Nb_2O_5 \cdot nH_2O$ (0.68) is calculated from:

 $M (TiO_2) / (m (TiO_2) + m (Nb_2O_5) + m (nH_2O)) = 25\%$ $M (TiO_2) / (M (TiO_2) + 1.48 M (Nb_2O_5) + 1.48 M (nH_2O)) = 25\%$ 80 / (80+1.48*265.8+1.48n*18) = 25%n = 6

Figure S1. NH₃-TPD spectrum of Nb₂O₅·nH₂O

Figure S2. NH₃-TPD spectrum of TiO₂

Figure S3. ¹H NMR spectrum (in D₂O) of the glucose solution (5.0% (w/w)) catalyzed by $TiO_2/Nb_2O_5 \cdot nH_2O$ (0.68) under 150 °C for 300 min (ethanol was used as internal standard, 0.03 M).

Figure S4. ¹H NMR spectrum (in D_2O) of the cellobiose solution (5.0% (w/w)) catalyzed by

TiO₂/Nb₂O₅·nH₂O (0.68) under 150 °C for 300 min (ethanol was used as internal standard, 0.08 M).

Figure S5. ¹H NMR spectrum (in D_2O) of the starch solution (5.0% (w/w)) catalyzed by

TiO₂/Nb₂O₅·nH₂O (0.68) under 150 °C for 300 min (ethanol was used as internal standard, 0.067 M).

Figure S6. Variation of glucose conversion (A) and HMF formation (B) with time. Conditions: $TiO_2/Nb_2O_5 \cdot nH_2O$ (0.68), 15 mg, aqueous glucose solution (5.0% (w/w)), 1.5 mL.

Figure S7. ¹H NMR spectrum (in D₂O) of the glucose solution (5.0% (w/w)) catalyzed by $TiO_2/Nb_2O_5 \cdot nH_2O$ (0.68) under 150 °C for 500 min (ethanol was used as internal standard, 0.08 M).

