Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

# **Supporting Information**

# Combined hydrogen bonding interactions with steric and electronic modifications for thermally robust α-diimine palladium catalysts toward ethylene (co)polymerizations

Handou Zheng,<sup>‡</sup> Liu Zhong,<sup>‡</sup> Cheng Du, Wenbo Du, Chi Shing Cheung, Jingjing Ruan and Haiyang Gao\*

School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China.

\*Corresponding author. Fax: +86-20-84114033. Tel.: +86-20-84113250. Email: Gao H.: gaohy@mail.sysu.edu.cn

### **Table of Contents**

| 1 Synthetic routes and NMR spectroscopy of complexes                             | 2  |
|----------------------------------------------------------------------------------|----|
| 2 Variable-temperature stacked <sup>1</sup> H NMR spectra of palladium complexes | 12 |
| 3 Crystallographic data for palladium complexes                                  | 15 |
| 4 Inductive parameters and resonance parameters of substituents                  | 19 |
| 5 Characterization of selected polymer samples                                   | 19 |

## 1 Synthetic routes and NMR spectroscopy of complexes



**Scheme S1** Synthetic routes of  $\alpha$ -diimine palladium complexes.



Fig. S1 <sup>1</sup>H NMR spectrum of palladium complex 1 in CDCl<sub>3</sub>.



Fig. S2 <sup>13</sup>C NMR spectrum of palladium complex 1 in CDCl<sub>3</sub>.



Fig. S3 <sup>1</sup>H NMR spectrum of palladium complex 3 in CDCl<sub>3</sub>.



Fig. S4 <sup>13</sup>C NMR spectrum of palladium complex 3 in CDCl<sub>3</sub>.



Fig. S5 <sup>1</sup>H NMR spectrum of palladium complex 4 in CDCl<sub>3</sub>.



Fig. S6 <sup>13</sup>C NMR spectrum of palladium complex 4 in CDCl<sub>3</sub>.



Fig. S7 <sup>1</sup>H NMR spectrum of palladium complex 5 in CDCl<sub>3</sub>.



Fig. S8 <sup>13</sup>C NMR spectrum of palladium complex 5 in CDCl<sub>3</sub>.



Fig. S9 <sup>1</sup>H NMR spectrum of palladium complex C1 in CDCl<sub>3</sub>.



Fig. S10 <sup>13</sup>C NMR spectrum of palladium complex C1 in CDCl<sub>3</sub>.



Fig. S11 <sup>1</sup>H NMR spectrum of palladium complex C3 in CDCl<sub>3</sub>.



Fig. S12 <sup>13</sup>C NMR spectrum of palladium complex C3 in CDCl<sub>3</sub>.



Fig. S13 <sup>1</sup>H NMR spectrum of palladium complex C4 in CDCl<sub>3</sub>.



Fig. S14 <sup>13</sup>C NMR spectrum of palladium complex C4 in CDCl<sub>3</sub>.



Fig. S15 <sup>1</sup>H NMR spectrum of palladium complex C5 in CDCl<sub>3</sub>.



Fig. S16 <sup>13</sup>C NMR spectrum of palladium complex C5 in CDCl<sub>3</sub>.



Fig. S17 <sup>1</sup>H NMR spectrum of palladium complex C1 and C1/MA in CDCl<sub>3</sub>.

## 2 Variable-temperature stacked <sup>1</sup>H NMR spectra of palladium complexes



Fig. S18 Variable-temperature stacked <sup>1</sup>H NMR spectra of the palladium complex 3 in  $C_2D_2Cl_4$ .



Fig. S19 Variable-temperature stacked <sup>1</sup>H NMR spectra of the palladium complex 7 in  $C_2D_2Cl_4$ .



**Fig. S20** The high temperature <sup>1</sup>H NMR spectra of cationic palladium complex **C3** at different times under 100 °C (A) and 120 °C (B).

| Table S1 Crystallographic data for the palladium complexes 1 and 3. |                                                                      |                         |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------|--|--|
| Compounds                                                           | 1 (X = OMe)                                                          | <b>3</b> (X = Cl)       |  |  |
| Empirical formula                                                   | $\begin{array}{c} C_{43}H_{51}ClN_2O_2Pd\cdot\\ CH_2Cl_2\end{array}$ | $C_{41}H_{45}Cl_3N_2Pd$ |  |  |
| Formula weight                                                      | 854.63                                                               | 778.54                  |  |  |
| Crystal color                                                       | Light red                                                            | Red                     |  |  |
| Crystal system                                                      | Monoclinic                                                           | Triclinic               |  |  |
| space group                                                         | $P2_1/n$                                                             | P-1                     |  |  |
| a (Å)                                                               | 11.7251(4)                                                           | 11.0716(4)              |  |  |
| b (Å)                                                               | 18.4561(6)                                                           | 16.3730(6)              |  |  |
| c (Å)                                                               | 19.8210(6)                                                           | 21.6279(7)              |  |  |
| $\alpha$ (deg)                                                      | 90                                                                   | 89.420(3)               |  |  |
| $\beta$ (deg)                                                       | 101.805(3)                                                           | 76.403(3)               |  |  |
| γ (deg)                                                             | 90                                                                   | 88.652(3)               |  |  |
| Volume(Å <sup>3</sup> )                                             | 4198.5(2)                                                            | 3809.6(2)               |  |  |
| Z                                                                   | 4                                                                    | 4                       |  |  |
| $ ho_{ m calc}$ (g/cm <sup>3</sup> )                                | 1.352                                                                | 1.357                   |  |  |
| $\mu$ (mm <sup>-1</sup> )                                           | 0.670                                                                | 6.088                   |  |  |
| F(000)                                                              | 1776.0                                                               | 1608.0                  |  |  |
| Crystal size (mm <sup>3</sup> )                                     | $0.1\times0.1\times0.1$                                              | $0.1\times0.1\times0.1$ |  |  |
| $2\theta$ range for data collection (deg)                           | 6.606 to 60.532                                                      | 6.828 to 145.77         |  |  |
| Index ranges                                                        | $-15 \le h \le 14$                                                   | $-13 \le h \le 11$      |  |  |
|                                                                     | $-25 \le k \le 17$                                                   | $-20 \le k \le 18$      |  |  |
|                                                                     | $-17 \le l \le 28$                                                   | $-26 \le l \le 26$      |  |  |
| Reflections collected                                               | 19845                                                                | 30181                   |  |  |
| Data/restraints/parameters                                          | 10461/0/480                                                          | 14875/541/1053          |  |  |
| Goodness-of-fit on F <sup>2</sup>                                   | 1.117                                                                | 1.108                   |  |  |
| Final P indices [1>2 (1)]                                           | $R_1 = 0.0631,$                                                      | $R_1 = 0.0688,$         |  |  |
| $\frac{1}{20}$                                                      | $wR_2 = 0.1557$                                                      | $wR_2 = 0.1742$         |  |  |
| R indices (all data)                                                | $R_1 = 0.0760,$                                                      | $R_1 = 0.0800,$         |  |  |
|                                                                     | $wR_2 = 0.1636$                                                      | $wR_2 = 0.1820$         |  |  |
| Largest diff. peak and hole (e/Å <sup>3</sup> )                     | 2.49 and -1.49                                                       | 1.37 and -1.36          |  |  |
| CCDC number                                                         | 2021215                                                              | 2021211                 |  |  |

## **3** Crystallographic data for palladium complexes

| Compounds                                          | $\frac{1}{4 (X = Br)}$                                              | $\frac{1}{5(X = I)}$       |
|----------------------------------------------------|---------------------------------------------------------------------|----------------------------|
| Empirical formula                                  | C <sub>41</sub> H <sub>45</sub> Br <sub>2</sub> ClN <sub>2</sub> Pd | $C_{41}H_{45}Cll_2N_2Pd$   |
| Formula weight                                     | 867.46                                                              | 961.44                     |
| Crystal color                                      | Colourless                                                          | Orange                     |
| Crystal system                                     | Monoclinic                                                          | Monoclinic                 |
| space group                                        | $P2_1/n$                                                            | $P2_1/c$                   |
| a (Å)                                              | 128172(2)                                                           | 10.0308(2)                 |
| b (Å)                                              | 18 0795(3)                                                          | 19 7307(4)                 |
| c (Å)                                              | 16 7528(3)                                                          | 20 2309(4)                 |
| $\alpha$ (deg)                                     | 90                                                                  | 90                         |
| $\beta$ (deg)                                      | 96 9770(10)                                                         | 101 055(2)                 |
| $\gamma$ (deg)                                     | 90                                                                  | 90                         |
| Volume $(Å^3)$                                     | 3853 36(11)                                                         | 3929 69(14)                |
| Z.                                                 | 4                                                                   | 4                          |
| $\rho_{\rm rests}$ (g/cm <sup>3</sup> )            | 1 495                                                               | 1 625                      |
| $\mu$ (mm <sup>-1</sup> )                          | 7 173                                                               | 2 141                      |
| F(000)                                             | 1752.0                                                              | 1896.0                     |
|                                                    | 1,02.0                                                              | $0.32 \times 0.045 \times$ |
| Crystal size (mm <sup>3</sup> )                    | $0.3 \times 0.2 \times 0.01$                                        | 0.03                       |
| $2\theta$ range for data collection (deg)          | 7.222 to 150.79                                                     | 6.362 to 55.932            |
| Index ranges                                       | $-16 \le h \le 15$                                                  | $-13 \le h \le 12$         |
|                                                    | $-14 \le k \le 22$                                                  | $-24 \le k \le 25$         |
|                                                    | $-20 \le l \le 20$                                                  | $-24 \le l \le 26$         |
| Reflections collected                              | 13144                                                               | 68625                      |
| Data/restraints/parameters                         | 7604/30/452                                                         | 8763/24/440                |
| Goodness-of-fit on F <sup>2</sup>                  | 1.036                                                               | 1.056                      |
|                                                    | $R_1 = 0.0532,$                                                     | $R_1 = 0.0447,$            |
| Final K indices $[1>2\sigma(1)]$                   | $wR_2 = 0.1458$                                                     | $wR_2 = 0.0927$            |
| R indices (all data)                               | $R_1 = 0.0594,$                                                     | $R_1 = 0.0638,$            |
| it indices (un dum)                                | $wR_2 = 0.1538$                                                     | $wR_2 = 0.1004$            |
| Largest diff. peak and hole<br>(e/Å <sup>3</sup> ) | 1.59 and -1.43                                                      | 2.03 and -1.57             |
| CCDC number                                        | 2021212                                                             | 2021210                    |

**Table S2** Crystallographic data for the palladium complexes 4 and 5.

| 2                                         | 01                                                   | 1 1                                                                          |                              |
|-------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|
| Compounds                                 | C1 (X = OMe)                                         | C3 (X = Cl)                                                                  | <b>C5</b> (X = I)            |
| Empirical formula                         | $C_{77}H_{66}BF_{24}N_3O_2Pd \cdot (CH_2Cl_2)_{1/4}$ | $^{66}BF_{24}N_3O_2Pd$ ·<br>$CH_2Cl_2)_{1/4}$ $C_{75}H_{60}BCl_2F_{24}N_3Pd$ |                              |
| Formula weight                            | 1659.77                                              | 1647.37                                                                      | 1873.35                      |
| Crystal color                             | Light Orange                                         | Yellow                                                                       | Colourless                   |
| Crystal system                            | Triclinic                                            | Triclinic                                                                    | Triclinic                    |
| space group                               | P-1                                                  | P-1                                                                          | P-1                          |
| a (Å)                                     | 14.4315(6)                                           | 12.48880(10)                                                                 | 13.0060(4)                   |
| b (Å)                                     | 16.2211(6)                                           | 16.9952(2)                                                                   | 16.8630(5)                   |
| c (Å)                                     | 18.6665(8)                                           | 19.3546(2)                                                                   | 19.2164(6)                   |
| $\alpha$ (deg)                            | 109.704(4)                                           | 69.1710(10)                                                                  | 98.154(2)                    |
| $\beta$ (deg)                             | 107.844(4)                                           | 75.0500(10)                                                                  | 96.070(2)                    |
| γ (deg)                                   | 95.369(3)                                            | 81.7150(10)                                                                  | 99.498(2)                    |
| Volume(Å <sup>3</sup> )                   | 3820.3(3)                                            | 3703.33(7)                                                                   | 4078.6(2)                    |
| Z                                         | 2                                                    | 2                                                                            | 2                            |
| $ ho_{ m calc}$ (g/cm <sup>3</sup> )      | 1.443                                                | 1.477                                                                        | 1.525                        |
| $\mu$ (mm <sup>-1</sup> )                 | 3.059                                                | 3.617                                                                        | 8.639                        |
| F(000)                                    | 1685.0                                               | 1664.0                                                                       | 1856.0                       |
| Crystal size<br>(mm <sup>3</sup> )        | $0.1\times0.1\times0.1$                              | $0.5\times0.4\times0.3$                                                      | $0.3 \times 0.1 \times 0.05$ |
| $2\theta$ range for data collection (deg) | 7.844 to 149.224                                     | 7.338 to 149.932                                                             | 7.694 to 148.638             |
| Index ranges                              | $-16 \le h \le 17$                                   | $-15 \le h \le 15$                                                           | $-16 \le h \le 14$           |
|                                           | $-20 \le k \le 19$                                   | $-21 \le k \le 21$                                                           | $-21 \le k \le 17$           |
|                                           | $-22 \le l \le 23$                                   | $-23 \le l \le 24$                                                           | $-23 \le l \le 23$           |
| Reflections collected                     | 25386                                                | 62440                                                                        | 24442                        |
| Data/restraints/pa<br>rameters            | 14830/51/1083                                        | 14901/50/1059                                                                | 15742/20/1028                |
| Goodness-of-fit<br>on F <sup>2</sup>      | 1.074                                                | 1.025                                                                        | 1.036                        |
| Final R indices                           | $R_1 = 0.0767,$                                      | $R_1 = 0.0501,$                                                              | $R_1 = 0.0635$ ,             |
| $[I \ge 2\sigma(I)]$                      | $wR_2 = 0.2011$                                      | $wR_2 = 0.1295$                                                              | $wR_2 = 0.1706$              |
| R indices (all                            | $R_1 = 0.0973,$                                      | $R_1 = 0.0508,$                                                              | $R_1 = 0.0727,$              |
| data)                                     | $wR_2 = 0.2201$                                      | $wR_2 = 0.1302$                                                              | $wR_2 = 0.1843$              |
| and hole $(e/Å^3)$                        | 1.01 and -1.22                                       | 1.42 and -2.12                                                               | 1.49 and -1.07               |
| CCDC number                               | 2021213                                              | 2021209                                                                      | 2021214                      |

Table S3 Crystallographic data for the palladium complexes C1, C3, and C5.

|               |     | 1 1                      |         |
|---------------|-----|--------------------------|---------|
| Pd<br>complex | Х   | Geometry                 | $	au_4$ |
|               |     | Tetrahedral $(T_d)$      | 1.00    |
| 1             | OMe | Dist. square planar      | 0.06    |
| 2             | Н   | Dist. square planar      | 0.06    |
| 3             | Cl  | Dist. square planar      | 0.09    |
| 4             | Br  | Dist. square planar      | 0.08    |
| 5             | Ι   | Dist. square planar      | 0.08    |
| <b>C1</b>     | OMe | Dist. square planar      | 0.08    |
| C2            | Н   | Dist. square planar      | 0.06    |
| C3            | Cl  | Dist. square planar      | 0.07    |
| C5            | Ι   | Dist. square planar      | 0.08    |
|               |     | Square planar $(D_{4h})$ | 0.00    |
|               |     |                          |         |

**Table S4** Four-coordinate geometry indices  $\tau_4$  for palladium complexes and representative examples.

The distortion around the Pd metal centers were quantified by the  $\tau$ 4 parameter,  $\tau$ 4 is a simple formula that can be used to gauge the geometries of four-coordinate transition metal complexes and main group compounds.

| Table S5 Inductive and resonance parameters of substituents. <sup>a</sup> |                    |                 |                 |  |  |
|---------------------------------------------------------------------------|--------------------|-----------------|-----------------|--|--|
| Х                                                                         | $\sigma_{ m para}$ | $\sigma_{ m I}$ | $\sigma_{ m R}$ |  |  |
| OMe                                                                       | -0.268             | +0.250          | -0.518          |  |  |
| Н                                                                         | 0                  | 0               | 0               |  |  |
| Cl                                                                        | +0.227             | +0.470          | -0.245          |  |  |
| Br                                                                        | +0.232             | +0.450          | -0.218          |  |  |
| Ι                                                                         | +0.276             | +0.390          | -0.114          |  |  |

#### **4** Inductive parameters and resonance parameters of substituents

 $a \sigma = \sigma_1 + \sigma_{R,r}$  referenced by *J. Am. Chem. Soc.*, 1958, **80**, 2436–2443; *Prog. Phys. Org. Chem.*, 1981, **13**, 119–251.

### 5 Characterization of selected polymer samples

|       | ~~~~ |              |                  |            | <i>c i j u i u</i> |        |
|-------|------|--------------|------------------|------------|--------------------|--------|
| entry | time | yield        | TOF <sup>b</sup> | $M_{ m n}$ | PDIc               | $BD^d$ |
| (h)   | (mg) | $(kg/mol)^c$ |                  |            |                    |        |
| 1     | 1    | 150          | 536              | 2.2        | 1.20               | 103    |
| 2     | 2    | 287          | 513              | 3.7        | 1.20               | 103    |
| 3     | 3    | 410          | 488              | 5.1        | 1.20               | 100    |
| 4     | 4    | 524          | 468              | 6.7        | 1.20               | 101    |
| 5     | 5    | 598          | 427              | 7.9        | 1.22               | 103    |

**Table S6.** Ethylene polymerization results using C3 (X = Cl) at different times.<sup>*a*</sup>

<sup>*a*</sup> Conditions: 10 μmol Pd, 100 °C, 0.2 atm ethylene pressure, 28 mL of toluene and 2 mL of CH<sub>2</sub>Cl<sub>2</sub>. <sup>*b*</sup> TOF in mol E/(mol Pd·h). <sup>*c*</sup> Determined by gel permeation chromatography (GPC) in 1,2,4trichlorobenzene at 150 °C using a light scattering detector. <sup>*d*</sup> Branching density determined by <sup>1</sup>H NMR spectroscopy in number of branches per 1000 carbon.

| ethylene pressures. <sup><i>a</i></sup> |        |       |       |                 |       |     |
|-----------------------------------------|--------|-------|-------|-----------------|-------|-----|
| ontru                                   | press. | yield | act b | $M_{\rm n}{}^c$ |       | PDd |
| entry                                   | (atm)  | (mg)  | act." | (kg/mol)        | I DI- | DD  |
| 1                                       | 0.2    | 287   | 14.4  | 3.7             | 1.20  | 103 |
| $2^e$                                   | 5      | 591   | 29.6  | 8.9             | 1.20  | 97  |
| $3^e$                                   | 10     | 693   | 34.7  | 10.0            | 1.21  | 95  |
| $4^e$                                   | 20     | 896   | 44.8  | 11.8            | 1.22  | 84  |

**Table S7.** Ethylene polymerization results using C3 (X = Cl) at different

<sup>*a*</sup> Conditions: 10 μmol Pd, 100 °C, 2 h, 28 mL of toluene and 2 mL of CH<sub>2</sub>Cl<sub>2</sub>. <sup>*b*</sup> act.: kg PE/(mol Pd·h). <sup>*c*</sup> Determined by GPC in 1,2,4-trichlorobenzene at 150 °C using a light scattering detector. <sup>*d*</sup> Branching density determined by <sup>1</sup>H NMR in number of branches per 1000 carbons. <sup>*e*</sup> 58 mL of toluene and 2 mL of CH<sub>2</sub>Cl<sub>2</sub>.



**Fig. S21** <sup>1</sup>H NMR spectra of PEs produced by complexes **C1-C5** in CDCl<sub>3</sub> (entries 5, 12, 19, 26, and 33 in Table 2).



**Fig. S22** <sup>1</sup>H NMR spectra of copolymers obtained by complexes **C1-C5** in CDCl<sub>3</sub> (entries 1, 7, 10, 13, and 14 in Table 3).



**Fig. S23** <sup>13</sup>C NMR spectrum of copolymers obtained by palladium complex C1 in CDCl<sub>3</sub> (entry 2 in Table 3).