Supporting Information

Tailored activity of Cu-Fe Bimetallic Beta zeolite with promising C₃H₆ resistance for NH₃-SCR

Qi Zhao, Bingbing Chen, Bolin Zou, Limei Yu, Chuan Shi*

State Key Laboratory of Fine Chemicals, School of Chemistry Engineering, Dalian University of Technology, Dalian 116024, China

* Corresponding author. Tel.: +86 411 84986083;

E-mail address: chuanshi@dlut.edu.cn (Chuan Shi).

Species –	The amount of species (mmol/g _{cat})		
	< 200 °C	200-400 °C	> 400 °C
NH ₃	1.31	1.21	0.15
NH ₃	1.46	0.97	0.40
	Species – NH ₃ NH ₃	The ar Species $- 200 ^{\circ}\mathrm{C}$ NH ₃ 1.31 NH ₃ 1.46	$\begin{tabular}{ c c c c c c } \hline The amount of species (mm) \\ \hline < 200 \ ^{\circ}C & 200\ ^{\circ}C \\ \hline \\ NH_3 & 1.31 & 1.21 \\ NH_3 & 1.46 & 0.97 \\ \hline \end{tabular}$

Table S1 The amount of NH₃ in TPD experiments at different temperature region

Reaction process	Species –	The amount of species (mmol/g _{cat})		
		< 100 °C	100-200 °C	> 200 °C
NO+O ₂ -adsorption	NO	0.037	0.10	0.12
NO+O ₂ +C ₃ H ₆ -adsorption	NO	0.015	0.22	0.015

Table S2 The amount of NO in TPD experiments at different temperature region

Fig. S1 TPD profiles for Cu_{6.8}-Fe-Beta exposure to 500 ppm NH₃/500 ppm C₃H₆/Ar at RT followed by heating in a flow of Ar at 10 °C/min.

Fig. S2 IR spectra at high wavenumber of Cu_{6.8}-Fe-Beta (A) and the consumption rate of peak at 1630 cm⁻¹ (B) after exposure to 500 ppm NH₃/He or 500 ppm NH₃/500 ppm C₃H₆/He at 25 °C followed by temperature raising to 500 °C in He.

Fig. S3 C₃H₆ (A) and CO₂ (B) signal in TPD profiles for Cu_{6.8}-Fe-Beta exposure to 500 ppm NO/10 % O₂/500 ppm C₃H₆/Ar at RT followed by heating in a flow of Ar at 10 °C/min.

Fig. S4 MS data for Cu_{6.8}-Fe-Beta treated by 500 ppm NH₃/Ar followed by exposure to 500 ppm $C_3H_6/500$ ppm NO/10% O₂/Ar at 150 °C for various times.

Fig. S5 CO₂ concentration during temperature raising from 150 to 650 °C in Ar for Cu_{6.8}-Fe-Beta pretreated by exposure to 500 ppm NH₃/Ar followed by exposure to 500 ppm C₃H₆/500 ppm NO/10% O₂/Ar at 150 °C.

Fig. S6 NO conversion for Cu_{6.8}-Fe-Beta after hydrothermal treatment as a function of temperature (A) and the influences of H₂O and SO₂ on SCR activity at 250 °C (B). Conditions: (A) 500 ppm NO, 500 ppm NH₃, 10% O₂, 10% CO₂, 5% H₂O and N₂ balance, GHSV = 80,000 h⁻¹; (B) 500 ppm NO, 500 ppm NH₃, 10% O₂, 5% H₂O, 50 ppm SO₂ and N₂ balance, GHSV = 80,000 h⁻¹.