Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Integration of Metalloporphyrin into Cationic Covalent Triazine Frameworks for the Synergistically Enhanced Chemical Fixation of CO₂

Qiu-Jin Wu,^{ac} Min-Jie Mao,^{abd} Jian-Xin Chen,*^b Yuan-Biao Huang,*^{acd} and Rong Cao,*^{acd}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: rcao@fjirsm.ac.cn, ybhuang@fjirsm.ac.cn

^b College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. E-mail: jxchen_1964@163.com

^c University of Chinese Academy of Science, Beijing 100049, China,

^d Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, China

Scheme S1. The synthesis of (a) ICTF-400 and (b) Co-PTF-400.

Fig. S1. (a) The XPS spectra of the Co-PCCTF_s; (b) The high-resolution XPS spectra (HR-XPS) of Co 2p for the Co-PCCTF₅ and (c) Co-PCCTF₃₀.

Sample	Ν	Imidazolium N ⁺	Cl ⁻ ratio in	Со	Zn
	(wt%)	ratio in N (%)	Cl (%)	(wt%)	(wt%)
ICTF-400	8.45	14.69	82.8	0	0.274
Co-PCCTF ₅	8	11.93	70.4	0.31	0.242
Co-PCCTF ₃₀	7.76	2.38	48.6	1.41	0.215
Co-PCCTF ₅ -reused				0.278	0.349

Table S1. Element content of ICTF-400, Co-PCCTF₅ and Co-PCCTF₃₀.

Catalyst	Co^{2+} content ^{<i>a</i>}	N^+ or Cl^{-b}	N ⁺ or Cl ⁻ : Co ^{2+ c}
	$[mmol g^{-1}]$	[mmol g ⁻¹]	
ICTF-400	0	0.90	0.90:0
Co-PCCTF ₅	0.053	0.68	13:1
Co-PCCTF ₃₀	0.24	0.13	0.50:1

Table S2. Catalytic active site content of ICTF-400, Co-PCCTF₅ and Co-PCCTF₃₀

^{*a*} Calculated by ICP analysis. ^{*b*} The $N^+ = Cl^-$ content was calculated using the formula:

$$N^{+}(\text{mmolg}^{-1}) = \frac{(\text{Imidazolium N}^{+} \text{ ratio in N}) * (\text{N content in } 1\text{g Co} - \text{PCCTF}_{X}) * 1000}{(\text{Atomic mass of N})}$$

^c The Cl⁻ : Co²⁺ ratio was calculated from the ICP, EA and XPS results

Table S3. BET and pore volume of Co-PCCTFs.

Catalyst	S _{BET}	$\mathbf{V}_{\mathbf{p}}$
Catalyst	$[m^2 g^{-1}]^a$	$[{ m cm}^3{ m g}^{-1}]^{b}$
ICTF-400	487	0.101
Co-PCCTF ₅	547	0.110
Co-PCCTF ₃₀	374	0.106

^{*a*} Surface area calculated on the basis of the BET model from the nitrogen adsorption isotherm ($P/P_0 = 0.01$ -1.0). ^{*b*} Total pore volume calculated at $P/P_0 = 0.99$.

Fig. S2. PXRD patterns of (a) ICTF-400, (b) Co-PCCTF₅ and (c) Co-PCCTF₃₀.

Fig. S3. The Raman spectra of Co-PCCTFs.

Fig. S4. The SEM image of Co-PCCTF₅.

Fig. S5. PXRD and IR patterns of Co-PCCTF₅ after reaction.

Fig. S6. Time course of the production of Chloropropene Carbonate. Reaction conditions: Co-PCCTF₅ (15 mg), epichlorohydrin (10 mmol), CO₂ (0.1 MPa), 120 °C.

Table S4. Comparison of TON of various catalysts for CO_2 cycliaddition reaction without addition of co-catalyst.

Catalyst	Т (°С)	Expoxide	Time (h)	CO ₂ (bar)	Yield (%)	TON	Reference	Year
Co-PCCTF ₅	120	ECH	24	1	94	940	This work	
MIL-101 -N(n-Bu) ₃ Br	80	РО	8	20	99	110	[S1]	2015
FJI-C10	80	ECH	12	1	87	247	[S2]	2017
UiO-67-IL	90	ECH	8	1	85.5	57	[S3]	2017
ZnTCPP⊂ (Br⁻)Etim-UiO-66	140	AGE	14	1	90	94.7	[S4]	2017
(I [−])Meim-UiO-66	120	ECH	24	1	93	125	[S5]	2018
ZIF-68	120	SO	12	10	93	-	[S6]	2014
CZ-ZIF	100	ECH	4	7	92	138.6	[S7]	2016
Ti-ZIF	100	SO	8	25	99	99	[S8]	2016
IL-ZIF-90	120	РО	3	1	95	194	[S9]	2016
ZIF-67	120	ECH	6	10	71	190	[S10]	2016
Fe/ZIF-8	120	SO	8	7	97	-	[S11]	2020
ZIF-8	100	ECH	4	7	98	40.9	[S12]	2012
PPS⊂COF -TpBpy-Cu	40	ECH	24	1	95	690	[813]	2019
COF-IL	80	SO	48	1	98	32.7	[S14]	2019

Al-CPOP	120	ECH	24	1	95	95	[S15]	2016
SYSU-Zn@IL ₂	80	РО	16	10	99	618	[S16]	2017
MTS-1(3)-AT-2	120	ECH	6	16	96	240	[S17]	2018
POF-PNA-Br-	60	РО	8	10	99.4	340.8	[S18]	2018
66Pym-iPrI	100	BO	24	5	92.7	655	[S19]	2020

[S1] D. X. Ma, B. Y. Li, K. Liu, X. L. Zhang, W. J. Zou, Y. Q. Yang, G. H. Li, Z. Shi, and S. H. Feng, *J. Mater. Chem. A*, 2015, *3*, 23136;

[S2] J. Liang, Y. Q. Xie, X. S. Wang, Q. Wang, T. T. Liu, Y. B. Huang, and R. Cao, *Chem. Commun.*, 2018, *54*, 342.

[S3] L. G. Ding, B. J. Yao, W. L. Jiang, J. T. Li, Q. J. Fu, Y. A. Li, Z. H. Liu, J. P. Ma, and Y. B. Dong, *Inorg. Chem.*, 2017, *56*, 2337.

[S4] J. Liang, Y. Q. Xie, Q. Wu, X. Y. Wang, T. T. Liu, H. F. Li, Y. B. Huang, and R. Cao, *Inorg. Chem.*, 2018, *57*, 2584.

[S5] J. Liang, R. P. Chen, X. Y. Wang, T. T. Liu, X. S. Wang, Y. B. Huang, and R. Cao, *Chem. Sci.*, 2017, *8*, 1570.

[S6] L. L. Yang, L. Yu, G. Q. Diao, M. Sun, G. Cheng, and S. Y. Chen, *J. Mater. Chem. A*, 2014, **392**, 278.

[S7] R. R. Kuruppathparambil, R. Babu, H. M. Jeong, G.-Y. Hwang, G.S. Jeong, M. Kim, D.-W. Kim, D.-W. Park, *Green Chem.*, 2016, *18*, 6349.

[S8] S. Vermaa, R. B. N. Baiga, M. N. Nadagoudab and R. S. Varma, *Green Chem.*, 2016, *18*, 4855.

[S9] J. Tharun, K. Bhin, R. Roshan, D. Kim, A. Kathalikkattil, R. Babu, H.Y. Ahn, Y. Won, and D.W. Park, *Green Chem.*, 2016, *18*, 2479.

[S10] K. R. Roshan, T. Jose, R. Babu, G.-Y. Hwang, A. C. Kathalikkattil, and D.-W. Park, *Appl. Catal. B Environ.*, 2016, *182*, 562.

[S11] L. H. Hu, L. Chen, X. Peng, J. W. Zhang, X. H. Mo, Y. J. Liu, and Z. C. Yan, *Micropor. Mesopor. Mater.*, 2020, **299**, 110123.

[S12] C. M. Miralda, E. E. Macias, M. Q. Zhu, P. Ratnasamy, and M. A. Carreon, *ACS Catal.*, 2011, *2*, 180.

[S13] Q. Sun, B. Aguila, J. Perman, N. Nguyen, and S. Q. Ma, J. Am. Chem. Soc., 2016, 138, 15790.

[S14] L. G. Ding, B. J. Yao, F. Li, S. C. Shi, N. Huang, H. B. Yin, Q. Guan, and Y. B. Dong, *J. Mater. Chem. A*, 2019, *7*, 4689.

[S15] T. T. Liu, J. Liang, Y. B. Huang and R. Cao, *Chem. Commun.*, 2016, *52*, 13288.
[S16] Y. J. Chen, R. C. Luo, Q. H. Xu, J. Jiang, X. T. Zhou, and H. B. Ji, *ACS Sustain. Chem. Eng.*, 2017, *6*, 1074.

[S17] D. Liu, G. Li, J. X. Liu, Y. Wei, and H. C. Guo, *ACS Appl. Mater. Interfaces*, 2018, *10*, 22119.

[S18] D. X. Ma, K. Liu, J. X. Li, and Z. Shi, ACS Sustain. Chem. Eng., 2018, 6, 15050.

[S19] H. Ji, N. Kanagaraj, W. Lee, T. S. Kim, D. Kim, and D.-H. Cho, *ACS Appl. Mater. Interfaces*, 2020, *12*, 24868.