Supplementary Information (ESI)

Spinel CuMn₂O₄ oxide as a superior catalyst for the aerobic oxidation of 5hydroxymethylfurfural toward 2,5-furandicarboxylic acid in water solvent

Xiaoyue Wan ^{a,*}, Nannan Tang ^a, Qi Xie ^a, Shuangyan Zhao ^a, Chunmei Zhou ^a, Yihu Dai ^a, Yanhui Yang ^{a,b} *

^a Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Corresponding author:

E-mail: <u>yhyang@njtech.edu.cn</u> (Y. Yang); ias_xywan@njtech.edu.cn (X. Wan).

Figure S1. XRD patterns of Cu Mn_2O_4 , Cu Mn_2O_4 _CSM, and Cu Mn_2O_4 _CM, respectively.

Figure S2. XRD patterns of CuMn₂O₄, LiMn₂O₄, and NiMn₂O₄, respectively.

Figure S3. XRD patterns of MnCu₂O₄.

Figure S4 Effect of the catalyst dosage on the aerobic oxidation of HMF over $CuMn_2O_4$ spinel catalyst. Reaction conditions: 0.5 mmol HMF; O₂, 1 MPa; H₂O, 10 ml; temperature, 120 °C; reaction time, 18 h; $n(NaHCO_3)/n(HMF)=2$.

 $Yield^{b}(\%)$ Others^d Carbon Conv. Balance^c (%) DFF FFCA **HMFCA** FDCA (%) 8.25 1.05 3.34 44.8 65.4 1.31 20.0

Table S1 Catalytic behavior with none oxide catalysts for aerobic oxidation of HMF.^a

^{*a*}Reaction conditions: 0.5 mmol HMF; none oxide catalyst; O₂, 1.0 MPa; H₂O, 10 ml; temperature, 120 °C; reaction time, 18 h; NaHCO₃/HMF=2. ^{*b*}DFF, HMFCA, FFCA, and FDCA denote 2,5-diformylfuran, 5-hydroxymethyl-2-furancarboxylic acid, 5-formyl-2-furan-carboxylicacid, and 2,5-furandicarboxylic acid, respectively. ^{*c*} Carbon Balance based on the detectable products including DFF, FFCA, HMFCA, FDCA, formic acid, levulinic acid, 2,5-furandimethanol (DHMF) and so on. ^{*d*} Others includes humin and other undetectable products by HPLC.

Figure S5 Photos of centrifugated liquid after reaction. Reaction conditions: (a) 0.5 mmol HMF; none oxide catalyst; O₂, 1.0 MPa; H₂O, 10 ml; temperature, 120 °C; reaction time, 18 h; NaHCO₃/HMF=2. (b) 0.5 mmol HMF; 0.84 mmol CuMn₂O₄ catalyst; O₂, 1.0 MPa; H₂O, 10 ml; temperature, 120 °C; reaction time, 18 h; NaHCO₃/HMF=2.

Figure S6 SEM images of (a, b) $CuMn_2O_4$ and (c, d) $CuMn_2O_4$ catalyst after the 6-time-repeatability by regeneration *via* calcination in air at 500 °C for 3 h.

Figure S7 XRD of $CuMn_2O_4$ after the 6-time-repeatability by regeneration *via* calcination in air at 500 °C for 3 h.

Catalyst	Dosage (g)	T : (1)	HMF	Select. (%)			
		Time (h)	Conv. (%)	Conv. (%) DFF FFC	FFCA	HMFCA	FDCA
CuMn ₂ O ₄	0.2	0.5	13.0	19.2	57.2	19.2	4.5
MnCu ₂ O ₄	0.2	1	24.2	23.3	70.9	0.0	5.8
CuO	0.2	1	19.0	30.9	25.4	0.0	28.6
Mn ₂ O ₃	0.1	0.5	13.1	30.2	60.6	0.0	5.2

Table S2 Catalytic behavior of different oxides catalysts for aerobic oxidation of HMF.^{*a*}

^aReaction conditions: 0.5 mmol HMF, 10 ml H₂O, 120 °C, 1.0 MPa O₂, 1.0 mmol NaHCO₃.

Catalyst		T : (1)		Select. (%)	
	Dosage (g)	Time (h)	DFF Conv. (%)	FFCA	FDCA
CuMn ₂ O ₄	0.05	0.5	24.4	89.7	10.3
MnCu ₂ O ₄ ^b	0.05	0.5	24.3	2.3	97.7
CuO	0.025	0.5	18.8	96.0	4.0
Mn ₂ O ₃	0.02	0.5	25.6	1.6	98.4

Table S3 Catalytic behavior of different oxides catalysts for aerobic oxidation of DFF.^a

^aReaction conditions: 2.0 mmol DFF, 10 ml H₂O, 120 °C, 1.0 MPa O₂, 1.0 mmol NaHCO₃.

^bReaction conditions: 1.0 mmol DFF, 10 ml H₂O, 120 °C, 1.0 MPa O₂, 1.0 mmol NaHCO₃.

Catalyst	Dosage (g)	Time (h)	FFCA Conv. (%)	Select. /% FDCA
CuMn ₂ O ₄	0.3	1.0	12.8	100
MnCu ₂ O ₄	0.3	1.5	12.7	100
CuO	0.3	24	14.0	100
Mn_2O_3	0.1	0.5	13.9	100

Table S4 Catalytic behavior of different oxides catalysts for aerobic oxidation of $FFCA^a$

^aReaction conditions: 0.5 mmol FFCA, 10 ml H₂O, 120 °C, 1.0 MPa O₂, 1.0 mmol NaHCO₃.

Figure S8 SEM images of (a, b, c) MnCu₂O₄ and (d, e, f) CuMn₂O₄.

Catalyst	Concentration (mg/L)		Cu: Mn Ratio	Mother Liquor Concentration in	
Catalyst	Cu	Mn	Cu. Will Kullo	Prepareration	
CuMn ₂ O ₄	8.77	15.1	1: 1.99	1:2	
MnCu ₂ O ₄	16.075	6.92	1.99: 1	2:1	

Table S5 The ICP results of $CuMn_2O_4$ and $MnCu_2O_4$.

Composition analysis of the powders by ICP

Figure S9. The TEM (a), HRTEM (b), HAADF-STEM (c) images and corresponding EDS mapping of Cu (d), Mn (e) and O (f) elements, respectively, of $MnCu_2O_4$ catalysts.

Figure S10 The FT- IR spectra of $CuMn_2O_4$ and $MnCu_2O_4$ samples

Figure S11 Deconvoluted XPS spectra of Cu 2p, Mn 2p, O 1s orbital levels from the MnCu₂O₄catalysts.

Figure S12 Time course of the aerobic oxidation of HMF over Mn₂O₃ catalyst. Reaction conditions: 0.5 mmol HMF, 1.64 mmol Mn₂O₃ ctalyst, 10 ml H₂O, 120 °C, 1.0 MPa O₂, n(NaHCO₃)/n(HMF)=2.

Time	Conv. (%)	Yield (%)				Amount of
(h)	HMF	DFF	FFCA	HMFCA	FDCA	O _{ins} (µmol)
3	8.4	2.7	2.16	1.6	1.7	34.3
4	9.4	2.0	2.0	1.0	2.5	36.2
8	14.6	4.4	3.8	0.8	2.7	52.3

Table S6 The anaerobic experiments of $CuMn_2O_4$ spinel catalyst in the oxidation of HMF.

Reaction conditions: 0.25 mmol HMF, 0.84 mmol catalyst, 20 ml H₂O, 120 °C, N₂: 1 MPa