Supporting Information

Construction and Evolution of Active Palladium Species on Phase-Regulated Reducible TiO₂ for Methane Combustion

Yihong Xiao, Juanjuan Li, Chen Wang, Fulan Zhong, Yong Zheng*, and Lilong Jiang

National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University,

Fuzhou, Fujian 350002, P. R. China

*Corresponding authors:

Dr. Yong Zheng

Tel: +86 0591 83731234-8201, Fax: +86 0591 83709796,

E-mail: zhengyong@fzu.edu.cn

Catalyst characterization

Temperature programmed oxidation by O_2 (O_2 -TPO): samples were heated up to 350 °C under He flow and held for 30 min, then cooled to 100 °C. Subsequently, the catalyst was exposed to a mixture of 2 vol.% O_2 in He (flow rate: 30 mL min⁻¹), and the temperature was then increased to 800 °C (ramp rate: 10 °C min⁻¹) and cooled down. The oxygen concentration was monitored by the TCD.

Temperature programmed desorption of O₂ (O₂-TPD): 100 mg catalyst was pretreated under He flow at 350 °C for 30 min. Then 2 vol. % O₂/He was switched on and held for another 30 min. Afterward, the catalyst was cooled to 50 °C under 2 vol. % O₂/He then heated to 900 °C under He flow, the mass signal of O₂ (m/z = 32) was recorded.

Temperature programmed reduction by H_2 (H_2 -TPR): Prior to reduction tests, each sample (100 mg) was pretreated in an argon flow (flow rate: 30 mL min⁻¹) holding at 300 °C for 30 min and was then cooled to 50 °C. The data were collected from 50 to 800 °C under 10 vol. % H_2 /Ar (flow rate: 30 mL min⁻¹) at a heating rate of 10 °C min⁻¹. The results were obtained by the TCD.

Temperature programmed reduction of CH₄ (CH₄-TPR): the sample was pretreated in a He flow at 300 °C for 30 min, then cooled to 30 °C. Afterward, the sample was heated from 30 °C to 900 °C with a heating rate of 10 °C min⁻¹ under 10 vol. % CH₄/Ar gas flow, and the characteristic signals of CH₄ (m/z = 16), CH₃ (m/z = 15), CO₂ (m/z = 44), H₂O (m/z = 18), CO (m/z = 28), H₂ (m/z = 2) were continuously monitored by mass spectrometer as a function of time and temperature.

sample	Pd loading amount (wt %)	Reaction condition	T ₅₀ (°C)	T ₉₉ (°C)	Ref
PT-1000	0.5	1 vol. % CH ₄ , 10 vol. % O ₂ and N ₂ equilibrium gas GHSV=30 000 mL g ⁻¹ h ⁻¹	334	370	This work
Pd/TiO ₂	5	2 vol. % CH ₄ , 8 vol. % O ₂ and N ₂ equilibrium gas GHSV=150000 mL g ⁻¹ h ⁻¹	350	>500	Niu et al ¹
Pd@TiO ₂	1	5 vol. % CH ₄ , 1 vol. % O ₂ and N ₂ equilibrium gas GHSV=170000 mL g ⁻¹ h ⁻¹	350	600	Ali et al ²
Pd/TiO ₂	0.4	300 ppmv CH ₄ in air, GHSV=21000 mL g ⁻¹ h ⁻¹	375	600	Janbey et al ³
Pd/TiO ₂	1	0.3 vol. % CH ₄ , 2.4 vol. % O ₂ and He equilibrium gas, GHSV=60000 mL g ⁻¹ h ⁻¹	330	500	Venezia et al ⁴
Pd/TiO ₂	1.1	1/120 (v/v) of CH ₄ /air 120 mL min ⁻¹	430	540	Wang et al ⁵
Pd/TiO ₂	1	1 vol. % CH ₄ , 99 vol. % air, GHSV=48000 mL g ⁻¹ h -1	800	>885	Sekizawa et al ⁶
Pd/TiO ₂	2	1 vol. % CH ₄ , 10 vol. % O ₂ and He equilibrium gas, GHSV=60000 mL g ⁻¹ h ⁻¹	381	>500	Carrazán et al ⁷
Pd/TiO ₂	2	1 vol. % CH ₄ , 99 vol. % air, GHSV=33000 mL g ⁻¹ h -1	-	-	Lin et al ⁸

Table S1. Performance comparison of some Pd/TiO_2 catalysts.

	Cell parameters (Å) ^a		
Sample	a=b	Crystallite size (nm) ⁶	
PT-500	4.6019	32.1	
T-500	4.5998	-	
PT-600	4.5967	65.4	
Т-600	4.5948	-	
PT-800	4.5932	75.5	
T-800	4.5918	-	
PT-1000	4.5944	78.3	
T-1000	4.5932	-	
PT-1200	4.5937	84.1	
T-1200	4.5914	-	
PT-1000-used	4.5994	82.6	

Table S2. Cell parameters and crystal size of T-x and PT-x catalysts.

^a Obtained from XRD (Fig. 2).

^b Crystalline size of samples was calculated by the Scherrer equation from the (111) peak of rutile.

	Pd^{4+}		Pd ²	Pd^{2+}		Pd^0	
sample	BE (eV)	%	BE (eV)	%	BE (eV)	%	n(Pd)/n(Ti) ratio (×10 ²)
PT-500	337.5	25.9	336.3	67.8	335.0	6.4	0.6
PT-600	337.5	19.2	336.4	75.1	335.0	5.6	1.4
PT-800	337.5	16.1	336.5	79.3	335.1	4.5	7.3
PT-1000	337.5	15.1	336.5	81.1	335.1	3.8	11.4
PT-1200	337.5	28.1	336.5	65.5	335.0	6.5	9.8

Table S3. XPS analyses of Pd $3d_{5/2}$ for PT-x catalysts.

Fig. S1 Ti 2p spectra of PT-x catalysts.

	Ti ⁴⁺	Ti ³⁺	T ²⁺ //T ²⁺ /T ⁴⁺)
sample	BE (eV)	BE (eV)	$11^{5/}(11^{5+11^{+}})$ ratio (×10 ²)
PT-500	458.5	457.3	3.0
РТ-600	458.5	457.5	4.2
PT-800	458.3	457.2	5.1
PT-1000	458.5	457.2	6.4
PT-1200	458.3	457.2	3.5

Table S4. XPS analyses of Ti 2p for PT-x catalysts.

Table S5. XPS analyses of O 1s for PT-x catalysts.

sample	O _{ads}		O _{latt}		$0 /0 (\times 10^{2})$
	BE (eV)	%	BE (eV)	%	$O_{ads}/O_{latt}(\times 10^2)$
PT-500	531.9	23.2	529.9	97.7	2.4
PT-600	531.9	16.0	529.8	84.0	19.0
PT-800	531.9	21.8	529.6	78.2	27.8
PT-1000	531.9	32.2	529.8	67.8	47.5
PT-1200	531.9	18.9	529.8	81.1	23.3

Fig. S2 UV-Vis DRS spectra of T-x supports.

Fig. S3 SEM images of T-500 (A), T-600 (B), T-800 (C), T-1000 (D) and T-1200 (E)

at different magnifications.

Fig. S4 Image of "Snow Cookie", a Chinese snack.

Fig. S5 EDS analysis performed on the individual particles in PT-1000 catalysts.

Catalysts –		Atomic percent (%)			Average n(Pd)/n(Ti)	
		Pd	0	Ti	ratio (×10 ²)	
	Area 1#	0.23	31.52	68.25		
PT-500	Area 2#	0.15	30.7	69.15	0.6	
DT (00	Area 1#	0.49	68.97	30.54	1.4	
P 1-600	Area 2#	0.42	69.04	30.55	1.4	
PT-800	Area 1#	2.05	69.49	28.46	7.2	
	Area 2#	2.13	69.03	28.84	7.5	
	Area 1#	2.95	70.23	26.82	11.4	
P1-1000	Area 2#	3.03	71.3	25.67	11.4	
DT 1000	Area 1#	2.66	72.5	24.85		
PT-1200	Area 2#	2.58	69	28.42	9.8	
PT-1000-used	Area 1#	2.49	71.66	25.85		
	Area 2#	2.64	71.95	25.41	10.1	

Table S6. Atomic percent of different elements and average n(Pd)/n(Ti) ratio overPT-x catalysts determined by XPS.

^a the average Pd/Ti ratio was determined based on the calculations of area 1# and area 2# (Spot: mono 500 μ m).

Fig. S6 n(Pd)/n(Ti) ratios determined through XPS over PT-x catalysts.

Fig. S7 O₂-TPD profiles of the PT-x catalysts.

sample	Decomposition peak	Decomposition	Reoxidation peak	(PdO+PdO ₂)/
	area of PdO	peak area of PdO ₂	area of Pd ⁰	Pd ^{0 a}
PT -500	10.20	-	2.70	3.78
PT -600	10.90	-	3.30	3.30
PT -800	16.10	-	14.60	1.10
PT -1000	16.76	-	16.27	1.03
PT -1200	0.30	12.3	10.10	1.25

Table S7. O₂-TPO profiles of PT-x catalysts.

^a The re-oxidation coefficient $(PdO+PdO_2)/Pd^0$ of catalysts is defined as the area of the decomposition peaks divided by that of the re-oxidation peak.

Fig. S8 CH₄-TPR profiles of the PT-x catalysts.

comula	Pd ⁴⁺	Pd^{2+}	Pd^0	n(Pd)/n(Ti) ratio
sample	BE (eV)/%	BE (eV)/%	BE (eV)/%	(×10 ²)
PT-1000-fresh	337.5/15.1	336.5/81.1	335.1/3.8	11.4
P T-1000-used	337.5/18.4	336.6/75.2	335.2/6.3	10.1

Table S8. XPS analyses of Pd $3d_{5/2}$ for PT-1000-fresh and PT-1000-used catalysts.

Fig. S9 SEM images of PT-1000-fresh (A) and PT-1000-used (B) catalysts.

Fig. S10 EDS analysis performed on the individual particles in PT-1000-used catalyst.

Fig. S11 HRTEM images (A, B), HAADF-STEM images (C) and EDS elemental

maps (D, E, F) of the PT-1000-used catalyst.

sample	Decomposition	Decomposition	Re-oxidation	(PdO+PdO ₂)/
	peak area of PdO	peak area of PdO ₂	peak area of Pd ⁰	Pd ⁰
PT-1000-fresh	16.76	-	16.27	1.03
PT-1000-used	13.44	2.81	13.30	1.22

Table S9. O₂-TPO profiles of PT-1000-fresh and PT-1000-used catalysts.

References

- 1. F. Niu, S. Li, Y. Zong and Q. Yao, J. Phys. Chem. C, 2014, 118, 19165-19171.
- S. Ali, M. J. Al-Marri, A. S. Al-Jaber, A. G. Abdelmoneim and M. M. Khader, J. Nat. Gas. Sci. Eng., 2018, 55, 625-633.
- A. Janbey, W. Clark, E. Noordally, S. Grimes and S. Tahir, *Chemosphere*, 2003,
 52, 1041-1046.
- 4. A. M. Venezia, G. Di Carlo, G. Pantaleo, L. F. Liotta, G. Melaet and N. Kruse, *Appl. Catal.B*, 2009, **88**, 430-437.
- C.-B. Wang, H.-G. Lee, T.-F. Yeh, S.-N. Hsu and K.-S. Chu, *Thermochim. Acta*, 2003, 401, 209-216.
- K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa and K. Eguchi, *Catal. Today*, 2000,
 59, 69-74.
- S. R. G. Carrazán, R. Mateos, V. Rives and P. Ruiz, *Catal. Today*, 2006, **112**, 161-164.
- W. Lin, Y. X. Zhu, N. Z. Wu, Y. C. Xie, I. Murwani and E. Kemnitz, *Appl. Catal.B*, 2004, 50, 59-66.