Supplementary Information

Unraveling the original active sites of amorphous silica-alumina supported nickel catalyst for highly efficient ethylene oligomerization

Jinghua Xu,^a Ruifeng Wang,^a Lirong Zheng,^b Junguo Ma,^a Wenjun Yan,^c Xiaofeng Yang,^a Junying Wang,^c Xiong Su,^{*a} Yanqiang Huang,^{*a}

^a CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. E-mai: suxiong@dicp.ac.cn, yqhuang@dicp.ac.cn

^b Beijng Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics,
Chinese Academy of Sciences, Beijing 100049, China

^c Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

Supplementary Figures

Fig. S1 The detailed product distribution of ethylene oligomerization on the N₂-Ni/ASA catalyst. Reaction conditions: 60 °C, 3.0 MPa, 0.5 g catalyst, 50% C_2H_4 - 50% N₂ with a flowrate of 15 mL min⁻¹.

Fig. S2 HAADF-STEM images of the N_2 -Ni-ASA sample.

Fig. S3 The stability testing of the N₂-pretreated catalyst. Reaction condition: 0.5 g catalyst, reaction temperature is 60 °C, reaction pressure is 3 MPa, 50% C_2H_4 - 50% N₂ with a flowrate of 15 mL min⁻¹.

For the calculation of if the product follows a Schulz-Flory type distribution or not, the following equation of Schulz–Flory equation was used:

 $\log(Wn/n) = n \log \alpha + \log((1-\alpha)2/\alpha)$

where, n is the number of monomer units in the oligomer, Wn is the mass fraction of the nth oligomer, and α is the chain growth probability (growth factor).

We have further tested the ethylene oligomerization performance on the N₂-Ni/ASA catalyst at a high MHSV of 2.25 h⁻¹. Upon the product distribution (see Fig. S4), we plotted log(Wn/n) as a function of (n-1) by using the above equation, as shown in Fig S5. There is almost a linear relationship. Therefore, the product distribution at a high MHSV of 2.25 h⁻¹ (by reducing the residence time) follows Schulz-Flory type distribution. A metallacycle mechanism for the oligomerization of ethylene over Ni⁺ ions in such N₂-Ni/ASA catalyst can be proposed.

Fig. S4 The detailed product distribution of ethylene oligomerization on the N₂-Ni/ASA catalyst. Reaction conditions: 60 °C, 3.0 MPa, 0.5 g catalyst, 50% C_2H_4 - 50% N₂ with a flowrate of 15 mL min⁻¹, MSHV = 2.25 h⁻¹.

Fig. S5 The calculation of carbon chain growth probability. Reaction conditions: 60 $^{\circ}$ C, 3.0 MPa, 0.5 g catalyst, 50% C₂H₄ - 50% N₂ with a flowrate of 15 mL min⁻¹, MSHV = 2.25 h⁻¹.

Supplementary Tables

Table 51. Emeta and oranged C_4 C_{12} products of the emytene of gomenzation reaction.										
Sample	C ₄ /%		C ₆ /%		C ₈ /%		C ₁₀ /%		C ₁₂ /%	
	LO	BO	LO	BO	LO	BO	LO	BO	LO	BO
N ₂ -pretreated	69.4	30.6	14.8	85.2	12.1	87.9	0.8	99.2	0.9	99.1

Table S1. Linear and branched C_4 - C_{12} products of the ethylene oligomerization reaction.

Note: LO means linear olefins; BO means branched olefins