## **Electronic Supplementary Information**

## Adsorption Driven Formate Reforming into Hydride and Tandem

## Hydrogenation of Nitrophenol to Amine over PdO<sub>x</sub> Catalysts

Xiaohui Zhu<sup>a,b</sup>, Shipan Liang<sup>b</sup>, Shuang Chen<sup>b</sup>, Xiangdong Liu<sup>\*a,b</sup> and Renhong Li<sup>\*a,b</sup>

<sup>a</sup>College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province (China). <sup>b</sup>School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province (China)

\*Corresponding author:

E-mail: lirenhong@zstu.edu.cn (R.H. Li); liuxd2007@yeah.net (X.D.Liu)



Figure S1 TEM image of 1.0 wt% Pd/TiNTs sample calcined under  $N_2$  (inset shows the HR-TEM image of a single Pd NP).



Figure S2 Full XPS spectral of PdO<sub>x</sub>/TiNTs and TiNTs.



Figure S3 High resolution Ti2p and O1s XPS spectra of 1.0 wt% Pd/TiNTs samples calcined under  $N_2$  or  $O_2$ .



Figure S4 UV-Vis spectra of different solution.



**Figure S5** UV-Vis spectral of PNP reduction reaction in the absence of SF: (a) pure TiNTs and (b) PdO<sub>x</sub>/TiNTs.



Figure S6 Recycle experiments of  $PdO_x/TiNTs$ .  $C_0$  and  $C_{30}$  indicate the concentration of PNP solution at 0 and 30 min, respectively.



Figure S7 GC spectra of PNP reduction reaction at 0, 5, and 30 min. Extractive solvent: ethyl acetate.



Figure S8 GC-MS spectra of the corresponding GC retention time positions shown in Figure S7.



**Figure S9** UV-Vis spectra of *p*-nitrobenzyl alcohol as a function of reaction time.



**Figure S10** GC spectra of *p*-nitrobenzyl alcohol after 5 min reaction. Extractive solvent: ethyl acetate.



Figure S11 GC-MS spectra of GC retention time positions shown in Figure S10.

$$NaOOCH + H_2O \longrightarrow NaHCO_3 + *H$$
(1)



\*H + 
$$O_{N}$$
  $OH$   $H_{2}N$   $H_{2}O$  (3)

$$NaHCO_3 + \bigcup_{H_2N} \xrightarrow{OH} \longrightarrow \bigcup_{H_2N} \xrightarrow{O'Na^+} + CO_2 + H_2O$$
(4)

**Figure S12** Schematic diagram of PdO<sub>x</sub>/TiNTs catalyze PNP in the presence of SF under ambition conditions.

| Entry | Catalysts                            | Hydrogen<br>source | Temperature<br>(°C) | TOF (h <sup>-1</sup> ) | Selectivity<br>(%) | Rference            |
|-------|--------------------------------------|--------------------|---------------------|------------------------|--------------------|---------------------|
| 1     | PdO <sub>x</sub> /TiNTs              | NaOOCH             | 25                  | 45.6                   | ~100               | This work           |
| 2     | Pd/TiNTs                             | NaOOCH             | 25                  | 17.4                   | ~100               | THIS WOLK           |
| 3     | 7% Ca/Co <sub>3</sub> O <sub>4</sub> | $NaBH_4$           | 35                  | 0.66                   | -                  | Ref. 1 <sup>1</sup> |
| 4ª    | $Pt_{55}Pd_{38}Bi_7$                 | $NaBH_4$           | 20                  | 1.92                   | -                  | Ref. 2 <sup>2</sup> |
| 5ª    | $Ni_{70}Pd_{30}$                     | $N_2H_2H_2O$       | 25                  | 4.98                   | ~99                | Ref.3 <sup>3</sup>  |
| 6     | Cu NCs <sup>b</sup>                  | $NaBH_4$           | 40                  | 3.6                    | -                  | Ref. 4 <sup>4</sup> |
| 7     | N-NG <sup>c</sup>                    | $NaBH_4$           | 25                  | 0.9                    | ~100               | Ref. 5⁵             |

**Table S1** Comparison of the catalyst properties during reduction PNP to PAmP under ambient conditions.

a. Calculation based on Pd,

b. Cu NCs: faceted copper nanocrystals,

c. N-doped graphene.

| Entry | Ka                 | p <i>k</i> a    |
|-------|--------------------|-----------------|
| 1     | NaOOCH             | 7.0-8.5 (0.1 M) |
| 2     | NaHCO <sub>3</sub> | 10.321          |
| 3     | PNP                | 7.15            |
| 4     | PAmP               | 5.48            |

**Table S2** Acidity (Ka) and acidity coefficient (pka) of different standard solutions.

## References

- 1. B. M. Mogudi, P. Ncube, N. Bingwa, et al., *Appl. Catal. B-Environ.*, 2017, **218**, 240-248.
- 2. Y.-Y. Shen, Y. Sun, L.-N. Zhou, et al., Journal of Materials Chemistry A, 2014, 2, 2977-2984.
- 3. D. Bhattacharjee, K. Mandal and S. Dasgupta, RSC Advances, 2016, 6, 64364-64373.
- 4. P. Zhang, Y. Sui, G. Xiao, et al., J. Mater. Chem. A, 2013, 1, 1632-1638.
- 5. X.-k. Kong, Z.-y. Sun, M. Chen, et al., Energy & Environmental Science, 2013, 6, 3260-3266.