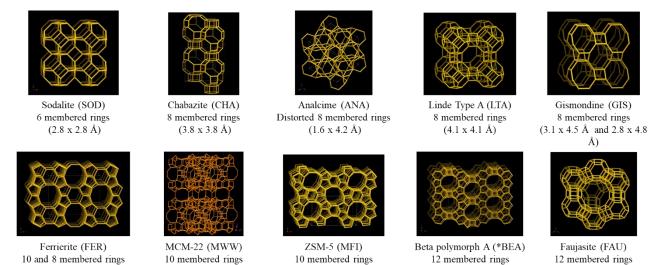
Recent developments in the control of selectivity in hydrogenation reactions by confined metal functionalities

Moussa Zaarour[†], Jurjen Cazemier[†], Javier Ruiz-Martinez^{*}

King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Catalysis Nanomaterials and Spectroscopy (CNS), Thuwal 23955, Saudi Arabia.

Mail: javier.ruizmartinez@kaust.edu.sa.


Telephone: +966128084530

[†]These authors contributed equally to this work

Zeolite	Channel composition	Aperture
Sodalite (SOD)	6 membered rings	2.8 x 2.8 Å
Chabazite (CHA)	8 membered rings	3.8 x 3.8 Å
Analcime (ANA)	Distorted 8 membered rings	1.6 x 4.2 Å
Linde Type A (LTA)	8 membered rings	4.1 x 4.1 Å
Gismondine (GIS)	8 membered rings	3.1 x 4.5 Å and 2.8 x 4.8 Å
Ferrierite (FER)	10 and 8 membered rings	4.2 x 5.4 Å and 3.5 x 4.8 Å
MCM-22 (MWW)	10 membered rings	4.0 x 5.5 Å and 4.1 x 5.1 Å
ZSM-5 (MFI)	10 membered rings	5.1 x 5.5 Å and 5.3 x 5.6 Å
Beta polymorph A (*BEA)	12 membered rings	6.6 x 6.7 Å and 5.6 x 5.6 Å
Faujasite (FAU)	12 membered rings	7.4 x 7.4 Å
hydrogenation reactions		

Table S1. Typical zeolites used as encapsulants for metal active sites in the selective

hydrogenation reactions.

12 membered rings (7.4 x 7.4 Å)

(6.6 x 6.7 Å and 5.6 x 5.6 Å)

Figure S1. Typical zeolites used as encapsulants for metal active sites in the selective hydrogenation reactions.

(4.2 x 5.4 Å and 3.5 x 4.8 Å) (4.0 x 5.5 Å and 4.1 x 5.1 Å) (5.1 x 5.5 Å and 5.3 x 5.6 Å)