Supporting information

Solar and Visible-Light Active Nano $Ni/g-C_3N_4$ Photocatalyst for Carbon Monoxide (CO) and

Ligand-Free Carbonylation Reactions

Mona Hosseini-Sarvari*and Zahra akrami ^aDepartment of Chemistry, Shiraz University, Shiraz 7194684795, I.R. Iran ^{*}Correspondence to Prof Mona Hosseini-Sarvari E-mail: hossaini@shirazu.ac.ir

Table of Contents

1) Tests for determining the appropriate catalyst for the carbonylation reaction	S3
2) Optimization	S3
3) Experimental information	S6
4) Characterization	S9
5)References	S57

1) Tests for determining the appropriate catalyst for the carbonylation reaction:

Initially, a model reaction was chosen in attendance of variety photocatalysts in tetrahydrofuran as the solvent and under irradiated-white light for 48 h, at room temperature (Table S1). The key objective of this work was finding suitable support for nickel as photocatalyst but since ZnO and TiO_2 have no absorption in the visible light region, we attempted to use doped Ni on graphitic carbon nitride (band gap: 2.7 eV) to increase light adsorption capacity in the visible region; fortunately, the capability of this model was remarkable. In the following, the activities of other photocatalysts (g-C₃N₄, B-C₃N₄, and also Ni/Sic) and also NiCl₂ were also examined, but, the reaction efficiency was notably increased by using them.

2) Optimization

Scheme S1: Alkoxycarbinylation

Figure S1. Alkoxycarbonylation under different lights

Figure S2. Alcoxycarbonylation reaction under light and no light.

Figure S3. Alkoxycarbonylation under natural sunlight.

Leaching test:

A mixture of iodobenzene (1 mmol), aniline (1 mmol) $Mo(CO)_6$ (1 mmol) nano Ni/g-C₃N₄ (10 mg, 6 wt % Ni), DMF (1.5 mL), was embedded a Pyrex round-bottom flask with a magnetic stir bar and was 3 cm away from the blue LED (11 W), and the reactant mixture was conducted under air condition at normal temperature for 24 h. Then it was centrifuged after complete the reaction for 2 hours to separate the nano Ni/g-C₃N₄ from the solution and the solvent reaction mixture was used to analyze the Ni content using Inductively Coupled Plasma (ICP) spectroscopy, which indicates that no Ni was detected in the filtrate solution. (Table 6 a).

A mixture of iodobenzene (1 mmol), benzyl alcohol (1 mmol), Mo(CO)₆ (1 mmol), nano Ni/g- C_3N_4 (10 mg, 6 wt % Ni), DMF (1.5 mL), was embedded a Pyrex round-bottom flask with a magnetic stir bar and was 3 cm away from the blue LED (11 W), and the reactant mixture was conducted under air condition at normal temperature for 24 h. Then it was centrifuged after complete the reaction for 2 hours to separate the nano Ni/g- C_3N_4 from the solution and the solvent reaction mixture was used to analyze the Ni content using Inductively Coupled Plasma (ICP) spectroscopy, which indicates that no Ni was detected in the filtrate solution. (Table 6 b).

3) Experimental information

General Information

Chemicals materials were either made in our laboratories or were acquired from Fluka, Aldrich, Acros, and Merck, and all solvents were obtained from commercial sources and dried employing standard procedures. Crude Products were purified by thin-layer chromatography. Silica gel polygrams SIL G/UV 254 plates were detected process of reactions. Optical characteristics of catalysts were detected by UV/vis spectrophotometer (Shimadzu UV-2450 spectrophotometer). IR spectra were acted on a Shimadzu FT-IR 8300 spectrophotometer and Perkin Elmer spectrum RXI. ¹H and ¹³C NMR spectra were registered in CDCl₃ as solvent using on Bruker, Avance 400 (400 MHz, and 100 MHz respectively) with TMS as an internal standard (multiplicity: s = singlet, d=

doublet, t = triplet, dd = doublet of doublets, m = multiplet). Catalysts were identified by power X-ray diffraction (XRD pattern) on a Bruker D8-advance X-ray diffractometer with Cu Ka (λ =1.54178 A°) incident radiation. The distribution morphology of the catalysis was determined by scanning electron microscope (JEOL, JSM-7610F Fe-SEM) and transmission electron microscopy (JEM-2100F, TEM at 200 kV). Metal contents were investigated by the ICP analyzer (Varian, Vista-pro). The specific surface areas (SSABET; (m2 /g)) of the nano solid were determined with the nitrogen adsorption measurement applying the BET procedure at 77 K (BELsorp-mini II). The fluorescence spectrum of the as-synthesized catalyst was recorded by a spectrofluorometer (Perkin-Elmer model: LS45). The lamps for irradiation were compact fluorescent lamp 11 W white LED (wavelength: 400-750 nm), 11 W blue LED (wavelength: 400-495 nm), 11 W green LED (wavelength: 495-570 nm), 11 W red LED (wavelength: 620-750 nm).

Preparation of the catalysts

Preparation of g-C₃N₄

g-C₃N₄ was prepared according to the procedure reported by Li.^[1] Typically, a Coors highalumina crucible was charged with 10 g of melamine powder, next placed in a 673in³ muffle furnace (115V / 14 Amps) at a heating rate of 20 C /min to 500 C in 2h. In the following for formation better structure, it was put at 520 C for 2 h.

Preparation of nano Ni/g-C₃N₄

The nano Ni/g-C₃N₄ was prepared by altered photodeposition procedure.^[2] 10 mg g-C₃N₄, 3 mL triethanolamine (TEOA), 250 μ L NiCl₂ (0.1 M) solution, 2 mL NaH₂PO₂ (0.1 M) aqueous solution and 4.9 mL H₂O were blended in a round bottom flask at room temperature. The system was stirred for 40 min under nitrogen atmosphere. Then, the mixed solution was irradiated under UV-vis light (300 W Xe lamp) for 30 min. The final point involved washing collected precipitates with distilled water to dispel the residues of reactants.

General procedure for aminocarbonylation in the presence of the nano $Ni/g-C_3N_4$ photocatalyst

To a Pyrex round-bottom flask set with a magnetic stir bar, aryl iodide (1 mmol), amine (1.5 mmol), Mo (CO₆) (1 mmol), nano Ni/g-C₃N₄ (0.01g, 6 wt %) and DMF (1.5 mL) were added and the reactant mixture was irradiated by 11 W blue LED Lamp ($\lambda > 440$ nm, distance 3.0 cm) in an

air atmosphere at room temperature. The reaction was stirred for a suitable time at room temperature (25 °C) and checked using TLC. Later the termination of the reaction, ethyl acetate (2 ml) was added to the reaction mixture and heterogeneous nano Ni/g-C₃N₄ were entirely isolated applying centrifugation, then, the organic phases were dehydrated over MgSO₄ and the solvent was vaporized under reduced pressure to acquire the crude. Ultimate product purification was done by silica gel column chromatography utilizing petroleum ether/ethyl acetate.

General procedure for alkoxy carbonylation in the presence of the nano $\rm Ni/g-C_3N_4$ photocataly st

To a Pyrex round-bottom flask set with a magnetic stir bar, aryl iodide (1 mmol), alcohol (1.5 mmol), Mo (CO₆) (1 mmol), nano Ni/g-C₃N₄ (0.01g, 6 wt %) and DMF (1.5 mL) were added and the reactant mixture was irradiated by 11 W blue LED Lamp ($\lambda > 440$ nm, distance 3.0 cm) in air condition at normal temperature. The reaction was stirred for a suitable time at room temperature (25 °C) and checked using TLC. Later the termination of the reaction, ethyl acetate (2 ml) was added to the reaction mixture and heterogeneous nano Ni/g-C₃N₄ were entirely isolated applying centrifugation, then, the organic phases were dried dehydrated over MgSO₄ and the solvent was vaporized under reduced pressure to acquire the crude. Ultimate product purification was done by silica gel column chromatography utilizing petroleum ether/ethyl acetate.

4) Characterization

Photocatalyst characterization

The characterization of the as-prepared photocatalyst was performed applying, UV-Vis absorption, EDX, ICP, XRD, SEM, TEM, and BET. The summary of results from the catalyst characterization is demonstrated in Table S2.

Table S2. Characterization data for Ni/g-C₃N₄ nanoparticles

Crystallite sizes of nano Ni/g-C ₃ N ₄ is 4.6 nm
The diameter of catalyst around 5-9 nm
6 (wt %) of Ni
7.98 nm
12.884 m ² .g ⁻¹

Crystallite sizes of nano Ni/g-C₃N₄ was determined by Scherrer's formula ^[3].

$$D = \frac{K \lambda}{R \lambda}$$

 $B \cos \theta$ The K factor in Scherrer's formula = 0.9 or close to unity λ is the wavelength = 1.54 Å = 0.154 nm $B = \frac{FWHM * 3.14}{180}$

FWHM is the full width of the peak at half the maximum intensity after subtraction of instrumental background. B = 0.0338

 Θ = diffraction angle, Cos Θ = 0.99

Figure S4. a) BET-Plot; b) BJH-Plot of nano Ni/g-C₃N₄

Characterization of compounds

N-phenylbenzamide (4a), 94% yield; white soilid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3345, 3055, 3027, 1657, 1625, 1538, 1440, 1301, 1179,1002, 885cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.96 (2H, d, J = 8.4 Hz), 7.87 (2H, d, J = 7.7 Hz), 7.77 (1H, s), 7.55 (1H, t, J = 7.3 Hz), 7.48 (2H, t, J = 8.2 Hz), 7.20 (2H, t. J=7.3), 7.04 (1H, t. J=7.3). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.0, 139.2, 132.1, 130.4, 128.9, 127.2, 124.8, 120.7, 118.0. Anal. Calcd for C₁₃H₁₁NO: C, 79.17; H, 5.62; N, 7.10. Found: C, 79.28; H, 5.67; N, 7.19.

N-(4-nitrophenyl) benzamide (4b), 96% yield; light yellow solid; TLC (Petroleumether:Ethyl acetate, 85:20 v/v) IR (thin film) 3340, 3052, 3023, 1655, 1620, 1548, 1537, 1438, 1347, 1300, 1176,1000, 883cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.21 (1H, s), 8.03 (2H, d, J = 7.1 Hz), 7.84 (2H, d, J = 8.9 Hz), 7.57 (2H, d, J = 7.3 Hz), 7.17-7.48 (3H, m).¹³C NMR (100 MHz, CDCl3) δ (ppm): 165.3, 146.2, 134.0, 133.3, 129.8, 128.9, 128.6, 125.2, 119.6. Anal. Calcd for C₁₃H₁₀N₂O₃: C, 64.46; H, 4.16; N, 11.56. Found: C, 64.40; H, 4.25; N, 11.51.

N-(4-chlorophenyl) benzamide (4c), 95% yield; beige solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3344, 3054, 3026, 1656, 1622, 1537, 1440, 1302, 1178,1005, 885, 795cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.86 (2H, d, J = 7.1 Hz), 7.75 (2H, d, J = 8.9 Hz), 7.60

(1H, t, J = 7.3 Hz), 7.38 (2H, t, J = 7.3 Hz), 7.24 (2H, d, J = 8.9 Hz), 7.15 (1H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.8, 132.0, 131.6, 129.2, 128.7, 128.4, 128.1, 126.5, 120.9. Anal. Calcd for C₁₃H₁₀ClNO: C, 67.40; H, 4.35; N, 6.05; Found: C, 67.46; H, 4.27; N, 6.00.

N-(3-bromophenyl) benzamide (4d), 90% yield; beige solid; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3341, 3050, 3026, 1653, 1624, 1539, 1441, 1303, 1179,1003, 881, 670cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.20 (s,1H), 7.89 (s, 1H), 7.81 (2H, d, J = 6.8 Hz), 7.53 (1H, t, J = 7.1 Hz), 7.34 (2H, t, J = 7.3 Hz), 7.24 (2H, d, J = 7.3 Hz), 7.18 (1H, t, J = 7.1 Hz). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.3, 139.4, 134.6, 132.2, 130.4, 128.9, 127.6, 123.5, 122.7, 119.0. Anal. Calcd for C₁₃H₁₀BrNO: C, 56.55; H, 3.65; N, 5.07; O, 5.79; Found: C, 56.46; H, 3.61; N, 5.18.

N-(4-methylphenyl) benzamide (4e), 87% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3341, 3050, 3026, 2920, 1653, 1624, 1539,1449, 1441, 1372,1303, 1179,1003, 881. cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.26 (s,1H), 7.87 (2H, d, J = 7.2 Hz), 7.55 (2H, d, J = 8.2 Hz), 7.51 (1H, t, J = 7.2 Hz), 7.43 (2H, t, J = 7.2 Hz), 7.16 (2H, d, J = 8.2 Hz), 2.33 (s, 3H).¹³C NMR (100 MHz, CDCl3) δ (ppm): 165.4, 135.3, 134.9, 133.6, 131.1, 129.0, 127.7, 126.4, 120.2. Anal. Calcd for C₁₄H₁₃NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.67; H, 6.29; N, 6.55.

(4-Chlorophenyl)(piperidin-1-yl)methanone(4l), 90% yield; Colorless oil; TLC

(Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film), 3055, 3022, 2922, 1653, 1616, 1539, 1424,1303, 1179,1003, 885, 656cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.38 (2H, d, J = 8.2 Hz), 7.35 (2H, d, J = 8.2 Hz), 3.34-3.70 (4H, m), 1.40-1.86 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 169.2, 135.6, 134.8, 129.2, 128.3, 42.9, 26.2, 25.2. Anal. Calcd for C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.33; H, 7.41; N, 7.87.

(4-Chlorophenyl)(morpholino)methanone (4m), 92% yield; yellow oil; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film), 3053, 3024, 2921, 1652, 1618, 1537, 1425,1293, 1175,1000, 880, 650.cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.40 (2H, d, J = 8.1 Hz), 7.36 (2H, d, J = 8.1 Hz), 3.45-3.73 (8H, m).¹³C NMR (100 MHz, CDCl3) δ (ppm): 169.8, 136.2, 133.8, 128.8, 128.6, 66.5, 47.9.Anal. Calcd for C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99. Found: C, 75.33; H, 7.41; N, 7.87.

N-(3-bromophenyl)-4-chlorobenzamide (4n), 92% yield; light yellow solid; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3387, 3286, 3047, 1660, 1620, 1534, 1448, 1300, 1175,1001, 883, 795, 680cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.45 (s, 1H), 8.01 (2H, d, J = 7.8 Hz), 7.83 (1H, s), 7.72 (2H, d, J = 7.8 Hz), 7.32 (1H, d, J = 7.6 Hz), 7.23 (1H, t, J = 7.7 Hz), 7.11 (1H, d, J = 7.6 Hz). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 165.3 139.1, 132.0, 130.4, 129.5, 129.1, 128.7, 127.9, 123.7, 122.7, 119.3.Anal. Calcd for C₁₃H₉BrClNO: C, 50.28; H, 2.92; N, 4.51. Found: C, 50.33; H, 2.99; N, 4.46.

N-phenylthiophene-2-carboxamide (40), 95% yield; light yellow solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3410, 3286, 3047, 1660, 1622, 1534, 1430, 1322, 1210,1011,795cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.70 (s,1H), 7.68 (1H, d, J = 7.7 Hz), 7.59 (1H, d, J = 7.7 Hz), 7.52 (2H, d, J = 7.6 Hz), 7.35 (2H, t, J = 7.5 Hz), 7.16 (1H, t, J = 7.5 Hz), 7.08 (1H, t, J = 7.6 Hz).¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.2, 137.7, 133.9, 130.8, 129.0, 128.6, 127.8, 124.6, 120.4. Anal. Calcd for C₁₁H₉NOS: C, 65.00; H, 4.46; N, 6.89. Found: C, 71.00; H, 4.37; N, 6.79.

Morpholino (thiophen-2-yl) methanone (4p), 89% yield; colorless oil; TLC (Petroleumether:Ethyl acetate, 85:19 v/v) IR (thin film) 3106, 3070, 2940, 2830, 1620, 1395, 1346, 1251,1081, 1034, 871, 714. cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.39 (d, 1H, J= 8 Hz), 7.19 (t, 1H, J= 8 Hz), 6.93 (d, 1H, J= 8 Hz), 3.71-3.87 (4H, m), 3.54-3.69 (4H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 163.6, 136.7, 129.0, 128.9, 126.9, 67.0, 46.1. Anal. Calcd for C₉H₁₁NO₂S: C, 54.80; H, 5.62; N, 7.10. Found: C, 54.71; H, 5.55; N, 7.15.

N-(thiazol-2-yl)benzamide (4q), 89% yield; yellowish oil; TLC (Petroleumether:Ethyl acetate, 85:20 v/v) IR (thin film) 3118, 3064, 2952, 2830, 1619,1481, 1361, 1319, 1241,1222, 1074, 882. cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.15 (d, 2H, J= 7.5 Hz), 7.65 (t, 1H, J= 7.7 Hz), 7.52 (t, 2H, J= 7.7 Hz), 7.28 (d, 1H, J= 7.8 Hz), 7.03 (d, 1H, J= 7.8 Hz), 6.90 (s, 1H). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 171.3, 165.3, 160.5, 135.9, 131.9, 128.2, 127.9, 112.7. Anal. Calcd for $C_{10}H_8N_2OS$: C, 58.81; H, 3.95; N, 13.72. Found: C, 58.89; H, 3.88; N, 13.81.

N-phenylcyclohexanecarboxamide (4r), 80% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3110, 3064, 2926, 2830, 2553, 2690, 1960, 1817, 1660,1450, 1257, 1241,1039, 1015, 852. cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.61 (1H, s), 7.58 (d, 2H, J= 7.9 Hz), 7.32 (t, 2H, J= 8.12 Hz), 7.11 (t, 1H, J= 7.4 Hz), 2.25-2.30 (1H, m), 1.83 – 1.98 (2H, m), 1.52-1.78 (2H, m), 1.20-1.33 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 174.8, 138.4, 128.7, 124.0, 120.3, 46.7, 29.9, 26.1, 24.8. Anal. Calcd for C₁₃H₁₇NO: C, 76.81; H, 8.43; N, 6.89. Found: C, 76.74; H, 8.36; N, 6.80.

N-(4-bromophenyl)cyclohexanecarboxamide (4s), 84% yield; colorless oil; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3112, 3061, 2830, 2550, 2692, 1958, 1819, 1662,1448, 1256, 1244,1037, 1018, 852, 680 cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.26-7.45 (4H, m), 7.20 (1H, s), 2.17-2.35 (1H, m), 1.86 – 2.08 (2H, m), 1.58-1.80 (2H, m), 1.29-1.50 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 174.4, 137.1, 131.5, 121.7, 116.6, 46.2, 29.4, 26.1, 25.7. Anal. Calcd for C₁₃H₁₆BrNO: C, 55.33; H, 5.72; N, 4.96. Found: C, 55.40; H, 5.65; N, 4.89.

N-(3-nitrophenyl)cyclohexanecarboxamide (4t), 84% yield; yellow solid; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3110, 3059, 2830, 2552, 2694, 1956, 1817, 1660, 1552, 1448, 1352, 1255, 1240,1035, 1016, 855 cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm):

8.45 (s, 1H), 7.98 (t, 1H, J= 7.9 Hz), 7.94 (s, 1H), 7.87 (d, 1H, J= 7.7 Hz), 7.49 (t, 1H, J= 7.9 Hz), 2.17-2.34 (1H, m), 1.73 – 2.09 (2H, m), 1.47-1.67 (2H, m), 1.26-1.43 (6H, m).

¹³C NMR (100 MHz, CDCl3) δ (ppm): 174.4, 138.6, 128.6, 124.9, 118.3, 114.2, 46.1, 28.9, 24.8, 24.3. Anal. Calcd for C₁₃H₁₆N₂O₃: C, 62.89; H, 6.50; N, 11.28. Found: C, 62.96; H, 6.41; N, 11.21.

N-(3-chlorophenyl)cyclohexanecarboxamide (4u), 87% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3114, 3056, 2827, 2551, 2690, 1955, 1818, 1668,1447, 1254, 1244,1035, 1017, 854, cm^{-1.1}H NMR (400 MHz, CDCl3) δ (ppm): 7.71 (s, 1H), 7.53 (t, 1H, J= 7.9 Hz), 7.40 (s, 1H), 7.24 (d, 1H, J= 7.7 Hz), 7.09 (t, 1H, J= 7.9 Hz), 2.01-2.27 (1H, m), 1.73 – 1.95 (2H, m), 1.44-1.59 (2H, m), 1.22-1.34 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 174.4, 131.8, 127.7, 123.6, 119.8, 117.3, 45.9, 28.9, 25.7, 24.8. Anal. Calcd for C₁₃H₁₆ClNO: C, 65.68; H, 6.78; N, 5.89. Found: C, 65.76; H, 6.68; N, 5.80.

N-(4-chlorophenyl)cyclohexanecarboxamide (4v), 87% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3113, 3054, 2821, 2547, 2687, 1959, 1821, 1665,1442, 1253, 1244,1037, 1011, 852, cm^{-1.1}H NMR (400 MHz, CDCl3) δ (ppm): 7.43 (d, 2H, J= 7.6 Hz), 7.10-7.25 (3H, m), 2.08-2.38 (1H, m), 1.81 – 2.06 (2H, m), 1.50-1.69 (2H, m), 1.08-1.17 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 174.7, 136.5, 130.2, 129.0, 121.1, 46.5, 29.6, 26.4, 25.7.Anal. Calcd for C₁₃H₁₆ClNO: C, 65.68; H, 6.78; N, 5.89. Found: C, 65.78; H, 6.66; N, 5.78.

N,2-diphenylacetamide (4w), 90% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3345, 3055, 3027, 1657, 1625, 1538, 1440, 1301, 1179,1002, 885cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.50 (2H, d, J = 8.2 Hz), 7.45 (2H, d, J = 7.74 Hz), 7.42 (1H, s), 7.37 (1H, t, J = 7.2 Hz), 7.30 (2H, t, J = 8.3 Hz), 7.09 (2H, t. J=7.2), 3.75 (2H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 169.2, 137.5, 134.2, 129.8, 129.2, 128.9, 127.7, 124.3, 119.9, 44.6. Anal. Calcd for C₁₄H₁₃NO: C, 79.59; H, 6.20; N, 6.63. Found: C, 79.66; H, 6.12; N, 6.69.

N-(2-ethylphenyl)-2-phenylacetamide (4x), 86% yield; light yellow powder; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3345, 3055, 3027, 1657, 1625, 1538, 1440, 1301, 1179,1002, 885cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.98 (2H, d, J = 8.2 Hz), 7.44 (2H, d, J = 7.70 Hz), 7.39 (1H, s), 7.27-7.32 (3H, m), 7.22 (1H, t, J = 8.1 Hz), 7.13 (1H, t, J=7.1). 3.82 (1H, s), 2.24 (2H, q, J=7.6), 0.92 (3H, t, J=7.5). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 169.2, 135.1, 134.8, 130.1, 129.8, 129.5, 128.9, 128.0, 126.8, 125.1, 122.5, 44.9, 24.4, 14.02. Anal. Calcd for C₁₆H₁₇NO: C, 80.30; H, 7.16; N, 5.85. Found: C, 80.21; H, 7.22; N, 5.79.

N,3-diphenylpropanamide (4y), 88% yield; white powder; TLC (Petroleumether:Ethyl acetate, 85:16 v/v) IR (thin film) 3345, 3055, 3027, 1657, 1625, 1538, 1440, 1301, 1179,1002, 885cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.51 (2H, d, J = 8.4 Hz), 7.46 (2H, d, J = 7.75 Hz), 7.35 (1H, s), 7.24 (1H, t, J = 7.1 Hz), 7.14 (2H, t, J = 8.5 Hz), 7.09 (2H, t. J=7.4), 3.09 (2H, t, J=7.9). 2.68 (2H, t, J=7.7). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 170.6, 140.8, 129.2, 129.0, 128.7, 128.2, 126.5, 124.5, 119.9, 39.3, 31.4. Anal. Calcd for C₁₅H₁₅NO: C, 79.97; H, 6.71; N, 6.22. Found: C, 79.89; H, 6.63; N, 6.15.

N-(2-ethylphenyl)-3-phenylpropanamide (4z), 86% yield; light yellow powder; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3345, 3055, 3027, 1657, 1625, 1538, 1440, 1301, 1179,1002, 885cm⁻¹; ¹H NMR (400 MHz, CDC13) δ (ppm): 7.72 (2H, d, J = 8.0 Hz), 7.40 (2H, d, J = 7.71 Hz), 7.32 (1H, s), 7.23-7.29 (3H, m), 7.20 (1H, t, J = 7.99 Hz), 7.14 (1H, t, J=7.0). 3.10 (2H, t, J = 7.35 Hz), 2.75 (2H, t, J = 7.62 Hz), 2.42 (2H, q, J=7.70). 1.14 (3H, t, J=7.60). ¹³C NMR (100 MHz, CDC13) δ (ppm): 170.4, 140.6, 134.8, 129.0, 127.9, 127.6, 126.5, 126.0, 124.3, 39.1, 31.9, 23.9, 13.7. Anal. Calcd for C₁₇H₁₉NO: C, 80.60; H, 7.56; N, 5.53. Found: C, 80.71; H, 7.49; N, 5.58.

Benzyl benzoate (6a), 98% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3091, 3034, 2963, 1718, 1603, 1584, 1497, 1451, 1371,1110, 753cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.16 (2H, d, J = 8.4 Hz), 7.57 (1H, t, J = 7.6 Hz), 7.51 (2H, t, J = 7.9 Hz), 7.43-7.48 (4H, m), 7.39 (1H, t. J=7.6), 5.44 (2H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.5, 136.4, 133.2, 130.4, 129.9, 128.8, 128.6, 128.4, 66.9. Anal. Calcd for C₁₄H₁₂O₂: C, 79.23; H, 5.70. Found: C, 79.14; H, 5.76.

2-Nitrobenzyl benzoate (6b), 94% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3088, 3032, 2962, 1709, 1602, 1584, 1548, 1496, 1449, 1371, 1344, 1107, 751cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.18 (2H, d, J = 8.2 Hz), 8.11 (1H, t, J = 7.4 Hz), 7.68 (2H, t, J = 7.7 Hz), 7.62 (1H, d. J=7.4), 7.46-7.58 (3H, m), 5.78 (2H, s). ¹³C NMR (100 MHz,

CDCl3) δ (ppm): 166.0, 147.8, 133.9, 133.5, 132.5, 130.2, 129.9, 129.1, 128.9, 128.7, 125.2, 63.4. Anal. Calcd for C₁₄H₁₁NO₄: C, 65.37; H, 4.31; N, 5.45. Found: C, 65.29; H, 4.25; N, 5.40.

Furan-2-ylmethyl benzoate (6c), 83% yield; colorless liquid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3150, 3121, 3030, 2957, 1700, 1563, 1584, 1485, 1440, 1172, 1061, 749cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.05 (2H, d, J = 7.6 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.45 (1H, d, J = 7.8 Hz), 7.41 (2H, t. J=7.6), 6.58 (1H, d. J=7.4), 6.48 (1H, t. J=7.8), 5.31 (2H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.3, 149.6, 143.4, 133.2, 130.0, 129.9, 128.5, 110.9, 110.7. Anal. Calcd for C₁₂H₁₀O₃: C, 71.28; H, 4.98. Found: C, 71.19; H, 4.91.

Methyl benzoate (6d), 92% yield; yellowish oil; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3066, 3036, 2952, 1728, 1603, 1492,1272, 1177, 1115, 970cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.01 (2H, d, J = 7.4 Hz), 7.50 (1H, t, J = 7.9 Hz), 7.38 (2H, t, J = 8.3 Hz), 3.81 (3H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.9, 132.7, 130.3, 129.8, 128.4, 52.0. Anal. Calcd for C₈H₈O₂: C, 70.58; H, 5.92. Found: C, 70.46; H, 5.85.

Ethyl benzoate (6e), 90% yield; white oil; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3091, 3064, 2989, 1719, 1585, 1491,1393, 1277, 1109, 711cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.04 (2H, d, J = 7.4 Hz), 7.50 (1H, t, J = 7.9 Hz), 7.38 (2H, t, J = 8.3 Hz), 4.35 (q, 2H, J = 6.2 Hz), 1.36 (t, 3H, J = 6.2 Hz). ³C NMR (100 MHz, CDCl3) δ (ppm): 165.9, 132.4,

130.0, 128.9, 128.9, 128.0, 60.3, 13.5. Anal. Calcd for C₉H₁₀O₂: C, 71.98; H, 6.71. Found: C, 71.83; H, 6.79.

Benzyl 4-nitrobenzoate (6f), 85% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3089, 3032, 2961, 1710, 1603, 1583, 1550, 1495, 1451, 1379, 1352,1107, 752cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.3 (2H, d, J = 8.4 Hz), 8.25 (2H, d, J = 8.4 Hz), 7.34-7.51 (5H, m), 5.45 (2H, s).¹³C NMR (100 MHz, CDCl3) δ (ppm): 164.1, 150.6, 135.5, 135.2, 130.8, 128.7, 128.7, 128.4, 123.5, 67.91. Anal. Calcd for C₁₄H₁₁NO₄: C, 65.37; H, 4.31; N, 5.45. Found: C, 65.43; H, 4.26; N, 5.39.

Furan-2-ylmethyl 4-nitrobenzoate (6g), 85% yield; clear brown liquid; TLC (Petroleumether:Ethyl acetate, 85:20 v/v) IR (thin film) 3149, 3119, 3032, 2959, 1706, 1603, 1579, 1550, 1490, 1448, 1379, 1352,1159, 747cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.23 (4H, d, J = 7.8 Hz), 7.48 (1H, d, J = 8 Hz), 6.52 (1H, t, J = 8 Hz), 6.42 (1H, d. J=8), 5.35 (2H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 166.0, 139.2, 132.1, 130.4, 128.9, 127.2, 124.8, 120.7, 118.0. Anal. Calcd for C₁₂H₉NO₅: C, 58.30; H, 3.67; N, 5.67. Found: C, 58.22; H, 3.61; N, 5.65.

Allyl 4-nitrobenzoate (6h), 89% yield; yellow solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3092, 3062, 2986, 1722, 1655, 1582, 1488,1391, 1272, 1105, 715cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.22 (2H, d, J = 7.6 Hz), 8.16 (2H, d, J = 7.6 Hz), 5.96-6.04 (1H, m), 5.40 (1H, d, J = 4.6 Hz), 5.34 (2H, d, J = 4.6 Hz), 4.81 (2H, d, J=2.8). ¹³C NMR (100 MHz, CDCl3)

δ (ppm): 164.3, 150.6, 135.6, 131.7, 130.8, 123.6, 119.1, 66.3. Anal. Calcd for C₁₀H₉NO₄: C, 57.97; H, 4.38; N, 6.76. Found: C, 57.92; H, 4.34; N, 6.82.

Isopropyl 4-nitrobenzoate (6i), 88% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3086, 3055, 2993, 1723, 1575, 1481,1393, 1270, 1106, 712cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.26 (2H, d, J = 7.8 Hz), 8.18 (2H, d, J = 7.8 Hz), 5.25-5.30 (1H, m), 1.38 (6H, d, J=7.2).¹³C NMR (100 MHz, CDCl3) δ (ppm): 164.4, 150.5, 136.5, 130.8, 123.6, 70.0, 21.9. Anal. Calcd for C₁₀H₁₁NO₄: C, 57.41; H, 5.30; N, 6.70; Found: C, 57.34; H, 5.39; N, 6.66.

Butyl benzoate (6j), 89% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3091, 3064, 2961, 1721, 1602, 1555,1492, 1387, 1275, 1110, 739cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.25 (2H, d, J = 7.9 Hz), 8.19 (2H, d, J = 7.9 Hz), 4.36 (2H, t, J = 6.3 Hz), 1.56-1.90 (2H, m), 1.36-1.49 (2H, m), 0.98 (3H, t, J = 7.5 Hz). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 164.7, 150.6, 136.2, 130.2, 123.9, 65.9, 30.8, 19.2, 13.9. Anal. Calcd for C₁₁H₁₄O₂: C, 74.13; H, 7.92. Found: C, 74.22; H, 7.87.

Benzyl 4-chlorobenzoate (61), 94% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:17 v/v) IR (thin film) 3095, 3034, 2966, 1719, 1607, 1589, 14958, 1456, 1383,1109, 756cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.12 (2H, d, J = 8.4 Hz), 8.05 (2H, d, J = 8.4 Hz), 7.40-7.55 (5H, m,), 5.41 (2H, s).¹³C NMR (100 MHz, CDCl3) δ (ppm): 165.0, 139.0, 131.4, 130.6, 128.8,

128.2, 128.1, 127.8, 127.7, 66.5. Anal. Calcd for C₁₄H₁₁ClO₂: C, 68.16; H, 4.49. Found: C, 68.26; H, 4.55.

2-Nitrobenzyl 4-chlorobenzoate (6m), 90% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3083, 3031, 2959, 1709, 1602, 1582, 1553, 1494, 1452, 1377, 1351,1106, 755cm⁻¹; ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.15 (1H, d, J = 8.3 Hz), 8.08 (2H, d, J = 8.5 Hz), 8.01 (1H, t, J=8.2), 7.68 (2H, d, J = 8.3 Hz), 7.28-7.50 (2H, m), 5.75 (2H, s). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 165.3, 140.0, 133.9, 132.1, 132.0, 131.2, 129.5, 129.2, 129.1, 125.2, 63.7. Anal. Calcd for C₁₄H₁₀ClNO₄: C, 57.65; H, 3.46; N, 4.80. Found: C, 57.58; H, 3.40; N, 4.72.

Benzyl cyclohexanecarboxylate (6n), 81% yield; white solid; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film) 3112, 3063, 2921, 2833, 2550, 2692, 1961, 1815, 1720,1452, 1256, 1240,1038, 1014, 851. cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 7.33-7.50 (5H, m), 5.13 (2H, s), 1.97-2.38 (1H, m), 1.66-1.95 (2H, m), 1.49-1.57 (2H, m), 1.23-1.46 (6H, m). ¹³C NMR (100 MHz, CDCl3) δ (ppm): 175.7, 136.5, 128.7, 128.6, 128.2, 128.1, 65.9, 43.0, 28.9, 25.9, 25.5. Anal. Calcd for C₁₃H₁₇NO: C, 76.81; H, 8.43; N, 6.89. Found: C, 76.74; H, 8.36; N, 6.80.

2-Nitrobenzyl cyclohexanecarboxylate (60), 80% yield; colorless oil; TLC (Petroleumether:Ethyl acetate, 85:18 v/v) IR (thin film) 3114, 3061, 2925, 2836, 2556, 2687, 1960, 1815, 1717, 1547,1450, 1349, 1250, 1243,1035, 1011, 852 cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): 8.02 (1H, d, J= 7.6 Hz), 7.61 (1H, t, J= 7.6 Hz), 7.53 (1H, t, J= 7.5 Hz), 7.43 (1H, d, J= 7.7 Hz), 5.40 (2H, s), 2.33-2.38 (1H, m), 1.71-1.92 (2H, m), 1.42-1.70 (2H, m), 1.17-1.29 (6H, m).

¹³C NMR (100 MHz, CDCl3) δ (ppm): 147.7, 133.7, 132.5, 129.1, 128.8, 125.0, 62.7, 43.0, 28.9, 26.1, 25.2. Anal. Calcd for $C_{13}H_{17}NO$: C, 76.81; H, 8.43; N, 6.89. Found: C, 76.74; H, 8.36; N, 6.80.

Methyl cyclohexanecarboxylate (6p), 77% yield; yellow oil; TLC (Petroleumether:Ethyl acetate, 85:15 v/v) IR (thin film), 2935, 2855, 2668, 1735,1452, 1436, 1355, 1230,1133, 986 cm⁻¹. ¹H NMR (400 MHz, CDCl3) δ (ppm): ¹³C NMR (100 MHz, CDCl3) δ (ppm): 182.5, 45.9, 43.0, 28.8, 25.8, 25.4. Anal. Calcd for C₈H₁₄O₂: C, 67.57; H, 9.92. Found: C, 67.48; H, 9.98.

¹³CNMR (4b)

¹³CNMR (4c)

¹³CNMR (4d)

¹³CNMR (41)

¹³CNMR (4m)

¹³CNMR (4t)

¹³CNMR (4v)

¹³CNMR (4w)

¹³CNMR (4x)

¹³CNMR (4z)

S44

¹³CNMR (6f)

¹³CNMR (6g)

13CNMR (6j)

13CNMR (6l)

S55

¹³CNMR (60)

5) References

1- S. C. Yan, Z. S. Li, Z. G. Zou, *Langmuir* 2009, 25(17), 10397–10401.

2- L. Kong, Y. Dong, P. Jiang, G. Wang, H. Zhang, N. Zhao, J. Mater. Chem. A. 2016, 4, 9998-10007.

3- H. Jensen, J. H. Pedersen, J. E. JØrgensenz, J. Skov Pedersen, K. D. Joensen, S. B. Iversen, E. G. SØgaard, *J. Exp. Nanosci.* 2006, 1, 355–373.