## Supporting Information for "Water-Gas Shift Reaction Cocatalyzed by the Polyoxometalates (POMs)-gold Composites: The "Magic" Role of the POMs"

Zhongling Lang,<sup>a,b\*,</sup> Yangguang Li,<sup>a</sup> Anna Clotet,<sup>b,\*</sup> Josep M. Poblet<sup>b</sup>

a Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China; E-mail: langzl554@nenu.edu.cn

b Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain; E-mail: anna.clotet@urv.cat



**Fig. S1** (a) Calculated energy (eV) profile for WGSR on bare Au(111) with (red) and without (black) solvent considered. All energies are referred to the water adsorbed state **I0** (defined as energy zero); (b) the main intermediates involved in the mechanism.



**Fig. S2** The adsorption modes of water on  $K_3PMo_{12}$ -Au(111) through the bridge (left) and top (right) sites.



Fig. S3. The optimized geometries for water dissociation process in the presence of three explicit water molecules on PMo<sub>12</sub>-Au(111).

|                | $\sum PM_{12}$ | ∑K   | ∑Au   | $\mathbf{H}_{w1}$ | $\mathbf{H}_{w2}$ | $\mathbf{O}_{\mathbf{w}}$ | С    | O <sub>CO</sub> |
|----------------|----------------|------|-------|-------------------|-------------------|---------------------------|------|-----------------|
| <i>m</i> -I1*  | -3.07          | 2.70 | 0.23  | 0.66              | 0.63              | -1.22                     | 1.10 | -1.03           |
| <i>m</i> -TS1* | -3.22          | 2.71 | 0.24  | 0.65              | 0.63              | -1.07                     | 1.13 | -1.06           |
| <i>m</i> -I2*  | -3.49          | 2.71 | 0.25  | 0.67              | 0.64              | -1.17                     | 1.47 | -1.08           |
| <i>m</i> -TS2* | -3.54          | 2.71 | 0.20  | 0.65              | 0.63              | -1.16                     | 1.57 | -1.06           |
| <i>m</i> -I3*  | -3.97          | 2.70 | 0.07  | 0.62              | 0.60              | -1.07                     | 2.09 | -1.04           |
| w-I1*          | -2.84          | 2.72 | 0.12  | 0.62              | 0.63              | -1.19                     | 1.10 | -1.04           |
| w-TS1*         | -2.85          | 2.72 | -0.18 | 0.64              | 0.67              | -1.09                     | 1.19 | -1.10           |
| w-I2*          | -3.04          | 2.72 | -0.18 | 0.67              | 0.62              | -1.12                     | 1.42 | -1.10           |
| w-TS2*         | -3.23          | 2.72 | -0.21 | 0.69              | 0.63              | -1.14                     | 1.59 | -1.05           |
| w-I3*          | -3.45          | 2.72 | -0.44 | 0.58              | 0.63              | -1.05                     | 2.09 | -1.06           |

**Table S1.** The Bader AIM charge comparisons for the main intermediates and transition states

 involved in the proposed mechanism catalyzed by PMo<sub>12</sub>-Au(111) and PW<sub>12</sub>-Au(111).