Electronic Supplementary Information for

## Thermal cracking of CH<sub>3</sub>Cl leads to auto-catalysis of deposited coke

Eugénie Blaser, Cécile Rosier, Michel Huet, Perrine Chaurand, Christophe Geantet and Stéphane Loridant

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France

## **Materials**

As the thermal cracking of CH<sub>3</sub>Cl was reported to be a radical route, two types of inert surface were used to initiate the CH<sub>3</sub>• and Cl• radicals. The first one consisted of glass beads purchased from Carl Roth (Ref. A555.1) with a size ranging between 1.25 and 1.65 mm and with a geometric area of 2 m<sup>2</sup>/kg. The second inert surface was SiO<sub>2</sub>-432 from Grace Davison, crushed and sieved between 50 and 400  $\mu$ m before the CH<sub>3</sub>Cl cracking. Its specific surface area (SSA) was 310 m<sup>2</sup>/g and it contained 0.1 wt% of Cl. Black Carbon was a Vulcan 3 (Cabot) powder sample with SSA of 75 m<sup>2</sup>/g.

## Catalytic testing for the thermal cracking

The CH<sub>3</sub>Cl cracking tests were performed in a fixed-bed reactor with a height and a diameter of 3 and 1 cm, respectively. All the tests were performed at a pressure of 0.4 MPa (similar to the DS) and six temperatures were set: 375, 400, 450, 475, 500 and 550 °C.

Before each test, the reactor was flushed under 100 mls/min of pure Ar at atmospheric pressure while temperature was increased from room temperature to the desired one with a rate of 5 °C/min and maintained under Ar for 1 h. The argon flush was then stopped. CH<sub>3</sub>Cl/Ar (10/90) mixed with N<sub>2</sub>, with respective flow of 5.22 and 3.18 mls/min, were introduced during ca 15 h. N<sub>2</sub> was used as an internal standard.

During the CH<sub>3</sub>Cl cracking, the output gases N<sub>2</sub>, CH<sub>3</sub>Cl, H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>8</sub>, C<sub>3</sub>H<sub>6</sub>, n-butane and isobutene were analyzed by Shimazu GC-2014 and treated with the LabSolutions software. HCl selectivity was determined using a trap with NaOH and by measuring the initial and final pH.

The selectivity to A product was calculated by (eqn. S1).

$$Sel(A) = \frac{n(A)_{output}}{n(CH_3Cl)_{input} - n(CH_3Cl)_{output}} \times 100$$
(eqn. S1)

where  $n(A)_{output}$  corresponds to the amount of A product at the output of the fixed bed reactor and  $n(CH_3CI)_{input}$  and  $n(CH_3CI)_{output}$  correspond to the amount of  $CH_3CI$  reagent on the input and output of the fixed bed reactor, respectively.

The consumption rate of  $CH_3CI$  was calculated by (eqn. S2) with X( $CH_3CI$ ) the conversion of  $CH_3CI$  and F( $CH_3CI$ ) the input flow of  $CH_3CI$  (mol.s<sup>-1</sup>). A first-order of reaction was assumed for the calculation of the reaction rate, because of the low partial pressure of  $CH_3CI$ .

The activation energy of thermal cracking was determined from the rates determined after two hours of reaction assuming a first order reaction. For glass beads, the experiments performed at 400 ° and 500 °C were discarded because the conversion was too low and limitation occurred, respectively. For silica particles, the experiment performed at 550 °C was not considered for the calculation because diffusion resistance was suspected.

## **Characterization methods**

In addition to gases, the amount of coke deposited on silica was determined by elemental analysis on carbon with a Thermo Scientific, Flash 200 organic elemental analyzer.

Raman spectra reported in this work were performed at ambient atmosphere with a LabRam HR (Jobin Yvon-Horiba) spectrometer. The exciting line at 633 nm of a He-Ne laser was used. The power measured at the sample was around 1 mW. The spatial resolution is ca 4 microns and the spectral resolution is 4 cm<sup>-1</sup>. For each sample, the spectrum corresponds to the mean of ca 20 spectra recorded on different analysis areas.

The X-Ray Fluorescence analysis was performed with a Panalytical, Epsilon 4 instrument equipped with an Ag source. The Cl content was determined from a semi-quantitative method (Omnian).



**Fig. S1**: Conversion of  $CH_3Cl$  at 400 °C on coke obtained by thermal cracking on 0.8 g of  $SiO_2$  at 450 and 550 °C, at 0.4 Mbar and with a residence time of 0.3 min.