Electronic supplementary information (ESI)

Conversion of syngas into light olefins over the bifunctional ZnCeZrO/SAPO-34 catalysts: Regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance

Yaoya Luo,Sen Wang,* Shujia Guo, Kai Yuan, Hao Wang, Mei Dong, Zhangfeng Qin, Weibin Fan, Jianguo Wang*

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, PR China

University of the Chinese Academy of Sciences, Beijing 100049, PR China

*Corresponding authors. Tel.: +86-351-4046092; Fax: +86-351-4041153. E-mail address: qzhf@sxicc.ac.cn (Z. Qin); wangsen@sxicc.ac.cn (S. Wang); iccjgw@sxicc.ac.cn (J. Wang)

As the Electronic supplementary information (ESI) of the manuscript “Conversion of syngas into light olefins over the bifunctional ZnCeZrO/SAPO-34 catalysts: Regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance”, following materials are provided:

More characterization results for the Zn$_{0.5}$CeZrO$_x$ composite oxides prepared with different complexing agents and calcined at different temperatures; optimization of the reaction conditions for the conversion of syngas to olefins over the Zn$_{0.5}$CeZrO$_x$-glucose-500/SAPO-34 bifunctional catalyst.
Fig. S1. HR-TEM images of the Zn$_{0.5}$CeZrO$_x$ composite oxides prepared with different complexing agents: (a) Zn$_{0.5}$CeZrO$_x$-glucose, (b) Zn$_{0.5}$CeZrO$_x$-citric acid, (c) Zn$_{0.5}$CeZrO$_x$-tartaric acid, (d) Zn$_{0.5}$CeZrO$_x$-adipic acid, and (e) Zn$_{0.5}$CeZrO$_x$-L-alanine.
Fig. S2. TEM images and size distributions (estimated by counting more than 100 particles) of the Zn$_{0.5}$CeZrO$_x$ composite oxides prepared with different complexing agents: (a) Zn$_{0.5}$CeZrO$_x$-glucose, (b) Zn$_{0.5}$CeZrO$_x$-citric acid, (c) Zn$_{0.5}$CeZrO$_x$-tartaric acid, (d) Zn$_{0.5}$CeZrO$_x$-adipic acid, and (e) Zn$_{0.5}$CeZrO$_x$-L-alanine.

Fig. S3. N$_2$ adsorption-desorption isotherms (I) and corresponding pore size distribution curves (II) of the Zn$_{0.5}$CeZrO$_x$ composite oxides prepared with different complexing agents: (a) Zn$_{0.5}$CeZrO$_x$-glucose, (b) Zn$_{0.5}$CeZrO$_x$-citric acid, (c) Zn$_{0.5}$CeZrO$_x$-tartaric acid, (d) Zn$_{0.5}$CeZrO$_x$-adipic acid, and (e) Zn$_{0.5}$CeZrO$_x$-L-alanine.
Fig. S4. N\textsubscript{2} absorption-desorption isotherms (I) and corresponding pore size distribution curves (II) of the Zn\textsubscript{0.5}CeZrO\textsubscript{x}-glucose composite oxides (prepared with glucose as the complexing agent) calcined at different temperatures: (a) 400 °C; (b) 500 °C; (c) 600 °C; and (d) 700 °C.

Fig. S5. XRD patterns of the Zn\textsubscript{0.5}CeZrO\textsubscript{x}-glucose composite oxides (prepared with glucose as the complexing agent) calcined at different temperatures: (a) 400 °C; (b) 500 °C; (c) 600 °C; and (d) 700 °C.
Fig. S6. XRD patterns (I), N₂ adsorption-desorption isotherms (II) and corresponding pore size distribution curves (III) of the Zn₀.₅CeZrOₓ-glucose/SAPO-34 composite catalyst before (a, fresh) and after enduring the reaction of syngas to light olefins (b, spent).

Fig. S7. NH₃-TPD profiles of the SAPO-34 molecular sieve (a) and the Zn₀.₅CeZrOₓ-glucose/SAPO-34 composite catalyst (b).
Fig. S8. Raman spectra (I), O(1s) XPS spectra (II), and Ce(3d) XPS spectra (III) of the Zn$_{0.5}$CeZr$_x$O$_{4-x}$-glucose composite oxides (prepared with glucose as the complexing agent) calcined at different temperatures: (a) 400 °C; (b) 500 °C; (c) 600 °C; and (d) 700 °C.
Fig. S9. (I) CO-TPD profiles of the Zn$_{0.5}$CeZrO$_x$ composite oxides prepared with different complexing agents: (a) Zn$_{0.5}$CeZrO$_x$-glucose, (b) Zn$_{0.5}$CeZrO$_x$-citric acid, (c) Zn$_{0.5}$CeZrO$_x$-tartaric acid, (d) Zn$_{0.5}$CeZrO$_x$-adipic acid, and (e) Zn$_{0.5}$CeZrO$_x$-L-alanine. (II) Variation of the CO adsorption quantity obtained from CO-TPD with the concentration of surface oxygen vacancies of the Zn$_{0.5}$CeZrO$_x$ composite oxides measured by O 1s XPS. The desorption amount of CO was calculated according to the peak area between 150 and 350 °C in the CO-TPD profiles; as the desorption of CO on the ZnCeZrO composite oxide appears in general at 50–320 °C and levels off with the temperature above 350 °C, the recording of the CO-TPD profiles of several samples ends at 450–500 °C.

Fig. S10. CO conversion and products selectivity for the conversion of syngas over the Zn$_{0.5}$CeZrO$_x$-glucose/SAPO-34 bifunctional catalysts calcined at different temperatures (400, 500, 600 and 700 °C). Reaction conditions: H$_2$/CO = 2/1, 300 °C, 1.0 MPa, GHSV = 5400 mL/g·h, 30 h, Zn$_{0.5}$CeZrO$_x$/SAPO-34 = 1 (by mass); reported at a TOS of 30 h.
Fig. S11. Influences of the reaction pressure (I), gas hourly space velocity (II), and syngas H\textsubscript{2}/CO ratio (III) on the CO conversion and products distribution for the conversion of syngas over the Zn\textsubscript{0.5}CeZrO\textsubscript{x}-glucose-500/SAPO-34 bifunctional catalyst. Except that specified at the graph abscissa, the reaction was carried out under a H\textsubscript{2}/CO molar ratio of 2, 300 °C, 1.0 MPa, GHSV = 5400 mL g-1 h-1, Zn\textsubscript{0.5}CeZrO\textsubscript{x}/SAPO-34 = 1 (by mass); the data were reported at a TOS of 15 h.