Rh Promoted $\mathrm{In}_{2} \mathrm{O}_{3}$ as Highly Active Catalyst for

CO_{2} Hydrogenation to Methanol

Nazmul Hasan MD Dostagir, ${ }^{\text {a,b }}$ Coogan Thompson, ${ }^{\text {c }}$ Hirokazu Kobayashi, ${ }^{\text {a }}$ Ayman M. Karim, ${ }^{\text {c }}$ Atsushi Fukuoka, ${ }^{* a}$ Abhijit Shrotri*a
${ }^{a}$ Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan, email:, ashrotri@cat.hokudai.ac.jp, fukuoka@cat.hokudai.ac.jp
${ }^{b}$ Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
${ }^{c}$ Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States

Table of contents

Materials and methods
Figure S1-S13
Table S1-S2
Results of DFT calculations with
Figure S14, S15, and table S3-S7
References

2-6
7-14
15-17

26

Materials. Indium nitrate $\left(\operatorname{In}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)$, rhodium nitrate (aqueous solution of $\mathrm{Rh}\left(\mathrm{NO}_{3}\right)_{3}(25$ $\mathrm{wt} . \%)$ and nitric acid $(9 \mathrm{wt} . \%)$, iron nitrate $\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}\right)$, nickel nitrate $\left(\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$, cobalt nitrate $\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$, ruthenium chloride $\left(\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$, hydrogen hexachloroplatinate $\left(\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, zinc nitrate $\left(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$, citric acid, sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ and silicon carbide (SiC) (β form, particle size 50 nm) were purchased from Fujifilm Wako Pure Chemical Corporation. Palladium nitrate $\left(\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ was bought from Sigma Aldrich.

Catalyst synthesis by co-precipitation and impregnation. For catalyst synthesis using coprecipitation method, $0.1 \mathrm{~g} / \mathrm{mL} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added dropwise to a 30 mL solution of $\operatorname{In}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(4.75 \mathrm{mmol})$ and $\mathrm{Rh}\left(\mathrm{NO}_{3}\right)_{3}(0.062 \mathrm{mmol})$ under vigorous stirring until the pH became 9. After aging for 1 h under stirring condition, the precipitate was centrifuged and washed thoroughly with water. It was dried at $130^{\circ} \mathrm{C}$ in an oven for 12 h followed by calcination. The catalyst was named as $\mathrm{Rh}-1.3-\mathrm{In}_{2} \mathrm{O}_{3} \mathrm{CP}$.

For catalyst prepared using wet impregnation, an equivalent amount of Rh present on the surface of $\mathrm{Rh}-1.3-\mathrm{In}_{2} \mathrm{O}_{3}$ was loaded on $\mathrm{In}_{2} \mathrm{O}_{3}$. In a typical procedure, $\mathrm{In}_{2} \mathrm{O}_{3}(0.5 \mathrm{~g}$, prepared by sol-gel method) was dispersed in 30 mL of water followed by the addition of $\mathrm{Rh}\left(\mathrm{NO}_{3}\right)_{3}(20 \mu \mathrm{~L}$ of $0.0491 \mathrm{~g} \mathrm{~mL}^{-1}$ aqueous solution) and the mixture was kept under stirring at room temperature for 30 minutes. Water was evaporated under reduced pressure and then the powder was dried at $130^{\circ} \mathrm{C}$ for 12 h followed by calcination. This catalyst was named as $\mathrm{Rh} / \mathrm{In}_{2} \mathrm{O}_{3} \mathrm{WI}$.

Catalyst Characterization. X-ray diffraction (XRD) was measured with Rigaku MiniFlex using CuK α X-ray $(\lambda=1.54 \AA)$ operating at 40 kV and $20 \mathrm{~mA} . \mathrm{N}_{2}$ adsorption isotherms were
measured at $-196{ }^{\circ} \mathrm{C}$ using a Belsorp mini analyzer. Prior to the adsorption, all samples were degassed under vacuum at $120^{\circ} \mathrm{C}$ for 2 h . Surface area was calculated by using BET theory between the relative pressure range 0.05 to 0.35 in the N_{2} adsorption isotherm. ${ }^{1}$ X-ray photoelectron spectroscopy (XPS) was performed with JEOL JPS-9010MC instrument. Charge correction was made by adjusting the external carbon peak to 284.6 eV . STEM image was obtained in a JEOL JEM-ARM200F atomic resolution electron microscope at an acceleration voltage of 200 kV equipped with EDS detector EX-24221M1G5T.

Data processing for X-ray absorption fine structure (XAFS) analysis. Data processing and analysis, for the x-ray absorption near edge and the extended x-ray absorption fine structure (XANES and EXAFS), were performed using Athena and Artemis programs of the Demter data analysis package. ${ }^{2}$ After the normalization of the absorption coefficient, the smooth atomic background was subtracted using the AUTOBKG code in Athena to obtain $\chi(\mathrm{k})$ (where k is the photoelectron wave number). The theoretical EXAFS signal for Rh-O, and Rh-In scattering paths were constructed using the $\mathrm{FEFF} 6^{3}$ code using the crystal structure of $\mathrm{In}_{2} \mathrm{O}_{3}$ and replacing the central In atom with a Rh atom. ${ }^{3}$ The theoretical EXAFS signals were fitted to the data in r-space using Artemis. The spectra were fitted by varying the coordination number of the single scattering paths, Rh-O and Rh-In/Rh, the effective scattering lengths, the bond length disorder of each path and the correction to the threshold energy, $\Delta \mathrm{E}_{0}\left(\Delta \mathrm{E}_{0}\right.$ was the same since all the paths were calculated using the same model). $\mathrm{S}_{0}{ }^{2}$ (the passive electron reduction factor) was obtained by first analyzing the spectrum for a Rh foil, and the best fit value (0.85) was fixed during the fitting. The k-range used for Fourier Transform of the $\chi(\mathrm{k})$ was $3-13.9 \AA^{-1}$ and the rrange for fitting was 1.2-2.0 \AA for fitting Rh-O scattering path only and 1.2-4.0 \AA for fitting the
full model including Rh-O and Rh-Rh paths. The best parameters fit using a k-weight of 1,2,3 (simultaneously) in Artemis are reported, however, the results were similar to those using only a k-weight of 2.

Equations. CO_{2} conversion, selectivity of CO and $\mathrm{CH}_{3} \mathrm{OH}$ and space time yield (STY) of $\mathrm{CH}_{3} \mathrm{OH}$ were calculated using the following equations.
CO_{2} conversion:

$$
X_{\left(\mathrm{CO}_{2}\right)}=\left(\frac{n \mathrm{CO}_{\text {out }}+n \mathrm{CH}_{3} \mathrm{OH}_{\text {out }}}{n \mathrm{CO}_{2 \text { out }}+n \mathrm{CO}_{\text {out }}+n \mathrm{CH}_{3} \mathrm{OH}_{\text {out }}}\right) \times 100 \%
$$

CO and $\mathrm{CH}_{3} \mathrm{OH}$ selectivity

$$
\begin{gathered}
S_{(C O)}=\left(\frac{n C O_{\text {out }}}{n C O_{\text {out }}+n C H_{3} O H_{\text {out }}}\right) \times 100 \% \\
S_{\left(C H_{3} \mathrm{OH}\right)}=\left(\frac{n C H_{3} \mathrm{OH}_{\text {out }}}{n C O_{\text {out }}+n C H_{3} O H_{\text {out }}}\right) \times 100 \%
\end{gathered}
$$

Space time yield (STY) of methanol:

$$
\left.\operatorname{STY}_{(\mathrm{CH}}^{3} \mathrm{OH}\right)=\left(\frac{\mathrm{SV} \times\left[\mathrm{CO}_{2}\right] \times X_{\left(\mathrm{CO}_{2}\right)} \times S_{\left(\mathrm{CH}_{3} \mathrm{OH}\right)} \times M_{\left(\mathrm{CH}_{3} \mathrm{OH}\right)}}{22400}\right)
$$

Where nCO_{2} out, $\mathrm{nCO}_{\text {out, }} \mathrm{nCH}_{3} \mathrm{OH}_{\text {out }}$ are moles of $\mathrm{CO}_{2}, \mathrm{CO}$ and $\mathrm{CH}_{3} \mathrm{OH}$ calculated from GC analysis. SV is space velocity in $\mathrm{mL} \mathrm{h}^{-1} \mathrm{~g}^{-1},\left[\mathrm{CO}_{2}\right]$ is the concentration of CO_{2} present in the feed gas mixture in $\%$, and $\mathrm{M}_{(\mathrm{CH3OH})}$ is molecular weight of methanol in $\mathrm{g} \mathrm{mol}^{-1}$. STY of $\mathrm{CH}_{3} \mathrm{OH}$ is reported in $\mathrm{g}_{\text {меон }} \mathrm{h}^{-1} \mathrm{~g}_{\text {cat }}{ }^{-1}$.

DFT calculations. We used the Gaussian 16 rev. A. 03 program and initially built a $\operatorname{In}_{24} \mathrm{O}_{36}$ cluster to qualitatively evaluate the chemical reactions on $\operatorname{In}_{2} \mathrm{O}_{3}$ (110) surface, where the initial geometry was the same as that of crystal $\operatorname{In}_{2} \mathrm{O}_{3}$. The DFT calculations for Rh doping on the surface were performed by using the PBE functional with the density fitting approximation. ${ }^{4}$ Basis sets were def2-SVP for the central three metal atom sites that were potential Rh doping sites; $6-31+\mathrm{G}(\mathrm{d})$ for O atoms surrounding the three metal atoms; $3-21+\mathrm{G}$ for other O atoms; LanL2DZ for In atoms in vicinal positioning to O atoms with the $6-31+\mathrm{G}(\mathrm{d})$ basis set; LanL2MB for other In atoms (see Fig. S14). ${ }^{5}$ This combination was used to decrease the number of basis as much as possible so that the self-consistent field calculations converged within acceptable time ($c a$. one week using an Intel Xeon Gold 6142 processor). Suitable effective core potential (ECP) was applied for Rh and In atoms. Empirical dispersion was included by Grimme's D3 function. ${ }^{6}$ Spin multiplicity was optimized, and the self-consistent field solution was re-optimized with the stable=opt option to find the most stable electronic state in all calculations. The material had three possible sites for $R h\left(M_{1}\right.$ to M_{3} in Fig. S14), locating at the center of the model. After replacing one In atom with Rh, orientation of the three metal sites and surrounding O atoms was optimized, where other atoms were frozen to preserve the crystal structure. We used the loose level of geometry optimization [root mean square (RMS) force <0.001667 a.u., RMS displacement <0.006667 a.u.] to decrease calculation time. Error in electronic energy due to use of the loose option was less than $0.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which was accurate enough to discuss the Rh sites.

Other calculations were performed after reducing the number of atoms to 40 (Fig. S15a) at the PBE0-D3 level of theory with the tight level of geometry optimization (RMS force <0.00045
a.u., RMS displacement <0.0012 a.u.), and zero-point vibration energy was involved in the energy calculations. ${ }^{7}$ Basis sets were slightly improved (Fig. S15a), compared to that employed for the 60 -nuclei system. The In atom at the central light blue atom, corresponding to M_{3} in Fig S14, was replaced with Rh when effect of doping was evaluated. To calculate the removal energy of lattice oxygen, oxygen atoms surrounding M_{3} (In or Rh) were removed by the following equation: $\mathrm{MO}_{\mathrm{x}}+\mathrm{H}_{2} \rightarrow \mathrm{MO}_{\mathrm{x}-1}+\mathrm{V}_{\mathrm{O}}+\mathrm{H}_{2} \mathrm{O}$. For the evaluation of CO_{2} activation, CO_{2} was located above the left $\left(\mathrm{M}_{2}\right)$ and the central light blue metal $\left(\mathrm{M}_{3}\right)$ atoms after removing a designated number of lattice oxygen atoms around M_{3}. In the transition state calculations, we found only one imaginary frequency vibration and intrinsic reaction coordinates (IRC) that connect expected substrates and products.

Fig. S1. Schematic representation of reaction set up.

Fig. S2. N_{2} adsorption isotherm of $\mathrm{In}_{2} \mathrm{O}_{3}$ and $\mathrm{Rh}-1.3-\mathrm{In}_{2} \mathrm{O}_{3}$.

Fig. S3. HAADF-STEM images for fresh (a) and used (e) Rh-1.3- $\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts. EDX mapping for fresh (b,c,d) and used (f,g,h) catalysts.

Fig S4. Corresponding EDX spectra of (a) fresh and (b) used Rh-1.3- $\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts showing EDX signature peaks for Rh and In . SiKa was detected in used catalyst because of the presence of quartz wool used during the reaction.

Fig. S5. XRD patterns of all catalysts. Only peaks for cubic $\mathrm{In}_{2} \mathrm{O}_{3}$ were observed at all Rh loadings.

Fig. S6. XRD of fresh and used Rh-1.3- $\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts.

Fig. S7. (a) Magnitude and (b) imaginary part of the Fourier transformed k^{2}-weighted $\chi(\mathrm{k})$ data $\left(\Delta k=3-13 \AA^{-1}\right)$ in R space for both the fresh and used $\mathrm{Rh}-1.3-\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts along with $\mathrm{Rh}(\mathrm{acac})_{3}$ and Rh foil as references.

Fig. S8. In MNN peak of fresh and used $\mathrm{Rh}-1.3-\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts.

- - Ocrystal Onear vacancy --- O-H

Fig. S9. O 1s XPS spectra of (a) $\mathrm{In}_{2} \mathrm{O}_{3}$, (b) fresh Rh-1.3- $\mathrm{In}_{2} \mathrm{O}_{3}$ and (c) used Rh-1.3- $\operatorname{In}_{2} \mathrm{O}_{3}$.
$\mathrm{In}_{2} \mathrm{O}_{3}$ has oxygen vacancies within its crystal structure, which gives rise to a peak at 530.9 eV in XPS corresponding to oxygen atoms adjacent to the vacancy ($\mathrm{O}_{\text {near vacancy }}$). The oxygen in surface hydroxyl groups appeared as a peak at 532 eV . The cumulative of these two oxygen species is reffered as defective oxygen.

Fig. S10. XPS analysis of (a) Rh 3d and (b) O 1s after reaction for 1h. Purple and blue lines show fitting of Rh^{3+} and reduced Rh species respectively.

Fig. S11. Mass spectrum for evolution of CO_{2} during TPD of formic acid impregnated Rh-1.3$\mathrm{In}_{2} \mathrm{O}_{3}$ catalyst.

Figure S 11 shows the evolution of CO_{2} gas due to decomposition of adsorbed formic acid on the catalysts surface. The peak at $270^{\circ} \mathrm{C}$ appeared at the same temperature (main manuscript, Figure 6, red line) compared to CO_{2} TPD after exposing the catalyst to condition similar to reaction condition, suggesting the formation of formates species during CO_{2} hydrogenation.

Fig. S12. CO DRIFTS over Rh-1.3-ZnO.

Adsorption of CO over Rh-1.3-ZnO catalyst shows peaks at 2087 and $2013 \mathrm{~cm}^{-1}$ in figure S 12 which were attributed to the vibration (symmetric and asymmetric) of CO on single Rh atom, gem-dicarbonyl $\mathrm{Rh}(\mathrm{CO})_{2}$. This suggests the atomic Rh dispersion in $\mathrm{Rh}-1.3-\mathrm{ZnO} .{ }^{8}$

Fig. S13. Comparison of catalytic activity for CO_{2} hydrogeantion between ZnO and $\mathrm{Rh}-1.3-$ ZnO (reaction condition: $300^{\circ} \mathrm{C}, 5 \mathrm{MPa}, 60,000 \mathrm{~mL} \mathrm{~h}^{-1} \mathrm{~g}_{\text {cat }}{ }^{-1}, \mathrm{H}_{2} / \mathrm{CO}_{2}=4$).

Table S1. XRD analysis of $\mathrm{In}_{2} \mathrm{O}_{3}$ and $\mathrm{Rh}-\mathrm{X}-\mathrm{In}_{2} \mathrm{O}_{3}$ catalysts.

Rh mol \%	2Θ (degree)	d spacing (\AA)	Lattice parameter $(\mathrm{a})(\AA)$
0	30.57	2.921	10.1186
0.64	30.60	2.918	10.1082
1.3	30.61	2.917	10.1048
2	30.63	2.915	10.0978
5	30.66	2.912	10.0875

Table S2. Results of fitting of the EXAFS spectra for fresh and used Rh-1.3- $\operatorname{In}_{2} \mathrm{O}_{3}$ catalysts and $\mathrm{Rh}(\mathrm{acac})_{3}$ used as reference.

Sample	Fresh ${ }^{\text {a }}$	After reaction ${ }^{\text {a }}$	Rh(acac)3
NRh-O	6.1 ± 0.7	5.2 ± 0.6	6.4 ± 0.9
$\mathbf{R}_{\text {Rh-O }}(\AA)$	2.05 ± 0.01	2.05 ± 0.01	1.99 ± 0.01
$\sigma^{2}{ }_{\text {Rh-O }} \times 10^{3}\left(\AA^{2}\right)$	5 ± 1	4 ± 1	2 ± 2
$\Delta E_{0 r \text { Rh-o }}(\mathrm{eV})$	7.0 ± 1.3	8.3 ± 1.2	7.9 ± 1.9
$\mathbf{N R h}_{\text {RIIRh }}$	5.3 ± 1.8	5.3 ± 1.8	-
RRh-In/Rh (\AA)	3.30 ± 0.01	3.30 ± 0.02	-
$\sigma^{\mathbf{2}}{ }_{\text {Rh-In/Rh }} \times 10^{\mathbf{3}}\left(\AA^{\mathbf{2}}\right)$	8 ± 2	9 ± 3	-
$\Delta E_{0} \mathrm{Rh}-\mathrm{In} / \mathrm{Rh}(\mathrm{eV})$	7.0 ± 1.3	8.3 ± 1.2	-
NRh-In/Rh	4.5 ± 2.7	3.0 ± 2.5	-
$\mathbf{R}_{\text {Rh-In/Rh }}(\mathbf{\AA}$)	3.82 ± 0.03	3.83 ± 0.03	-
$\sigma^{\mathbf{2}}{ }_{\text {Rh-In/Rh }} \times 10^{\mathbf{3}}\left(\AA^{\mathbf{2}}\right.$)	8 ± 4	7 ± 5	-
$\Delta E_{0 R h-I n / R h ~(e V) ~}^{\text {(}}$	7.0 ± 1.3	8.3 ± 1.2	-
Reduced χ^{2}	249	199	9433
R-factor	0.0086	0.0094	0.0022

${ }^{\text {a }}$ The coordination numbers and bond lengths for the Rh-O path in both catalysts were almost identical for the models with and without the Rh-In scattering paths. Note that the scattering from In and Rh have similar phase shift due to their similar atomic numbers. Therefore, the scattering from labelled $\mathrm{Rh}-\mathrm{In}$ can also be $\mathrm{Rh}-\mathrm{Rh}$, however, the low weight loading of Rh suggests that the scattering is from In and not from Rh.

Notation: N, coordination number of absorber-backscatterer pair; R, radial absorberbackscatterer distance; σ^{2}, the mean square displacement of the half-path length and represents the stiffness of the bond for a single scattering path, $\Delta \mathrm{E}_{0}$, correction to the threshold energy.

Results of DFT calculations.

An $\mathrm{In}_{24} \mathrm{O}_{36}$ cluster model with atomic arrangement similar to 110 plane of $\mathrm{In}_{2} \mathrm{O}_{3}$, known to be the active plane for CO_{2} reduction, was doped with Rh (Fig. S14). As this model contains influence of dangling bonds at the edge near reaction centers $\left(\mathrm{M}_{1}-\mathrm{M}_{3}\right)$, the calculations are used for qualitative understanding of the molecular level behaviors of the material. The electronic energy evaluation suggested that Rh preferred the M_{2} and M_{3} sites, which were octahedral sites with five O coordination $\left(\mathrm{RhO}_{5}\right.$; Table S3). We decided to put Rh at the M_{3} site as a representative promising site for Rh doping. In this case, the average $\mathrm{Rh}-\mathrm{O}$ bond length (2.05 \AA) in the model was found to be similar to that determined from EXAFS analysis of the catalyst, which suggested that this model is similar to the real Rh -doped $\mathrm{In}_{2} \mathrm{O}_{3}$.

Fig. S14. $\mathrm{In}_{24} \mathrm{O}_{36}$ model employed in the DFT calculations for evaluating possible Rh sites. Basis sets: light blue metal atoms $\left(\mathrm{M}_{1}-\mathrm{M}_{3}\right)$: def2-SVP; O atoms shown as red balls: $6-31+\mathrm{G}(\mathrm{d})$; In atoms shown as brown balls: LanL2DZ; O atoms depicted as red stick: 3-21+G; In atoms depicted as brown stick: LanL2MB.

Table S3. DFT calculations for the Rh doping at the In sites on $\operatorname{In}_{2} \mathrm{O}_{3}(110)$ plane using a 60 nuclei model. ${ }^{a}$

$\mathrm{Rh} \mathrm{site}^{a}$	$\Delta E($ electronic $) / \mathrm{kJ} \mathrm{mol}^{-1}$
M_{1}	+33.2
M_{2}	+9.9
M_{3}	0

${ }^{\bar{a}}$ In atoms at M_{1} to M_{3} sites (Fig. S14) were replaced with a Rh atom.

For the roles of Rh on the formation of oxygen vacancy, we prepared a 40-nuclei mode (Fig. S15a), a partial structure of that in Fig. S14. The M_{3} site was doped with Rh as discussed above. Hydrogenation condition removed four O atoms around the Rh in a thermodynamically favored manner ($\mathrm{RhO}, \Delta E=-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$; Fig. S15b, red line), and the Rh atom was stabilized by the interaction with neighboring In atoms. In contrast, undoped $\mathrm{In}_{2} \mathrm{O}_{3}$ lost only one O atom around the In atom at the same site owing to large uphill nature of the second reduction (Fig. S15b, blue line), thus suggesting that Rh facilitates the formation of a higher density of oxygen vacancies, compared to In atoms.
(a)

(c)

(b)

(d)

Fig. S15. Model for evaluating oxygen vacancy formation and CO_{2} activation. (a) structure of this system, (b) the removal of lattice oxygen around surface Rh or $\operatorname{In}\left(\mathrm{MO}_{\mathrm{x}}+\mathrm{H}_{2} \rightarrow \mathrm{MO}_{\mathrm{x}-1}+\right.$ $\mathrm{V}_{\mathrm{O}}+\mathrm{H}_{2} \mathrm{O}$), (c) CO_{2} adsorption on RhO site and (d) reduction of the CO_{2}, where only the important centers are depicted. Gray: C; pink purple: $\mathrm{Rh} . \mathrm{M}_{2}$ and M_{3} are corresponding to the same sites in Fig. S14. Basis sets: light blue metal atoms: def2-SVP; O atoms shown as red balls: $6-31++G(d)$; In atoms shown as brown balls: LanL2DZ; O atoms depicted as red stick: $3-21+G$. The $6-31++G(d)$ basis set was applied for additional atoms $\left(\mathrm{CO}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$.

We also studied the activation of CO_{2} and the hydrogenation to formate, the intermediate detected in the real experiments. Introduction of a CO_{2} molecule onto the RhO site produced a $\mathrm{Rh}-\mathrm{COO}$ species of which the O atoms occupied two oxygen vacant sites ($\Delta E=-159 \mathrm{~kJ} \mathrm{~mol}^{-1}$; Fig. S 15 c). The $\mathrm{C}-\mathrm{O}$ bond lengths were 0.13 and $0.16 \AA$ longer than that of gaseous CO_{2}. Moreover, the COO moiety had a bending angle of 112° and a CM5 charge ${ }^{9}$ of -0.43 e , thus showing activation of $\mathrm{CO}_{2} .{ }^{10}$ Hydrogen addition to the activated CO_{2} was tested after coordinating two H atoms on Rh . The H_{2} dissociation to produce $\mathrm{Rh}(-\mathrm{H})_{2}$ was energetically favorable ($-54 \mathrm{~kJ} \mathrm{~mol}^{-1}$). The H species smoothly attacked the activated CO_{2} and successively $\mathrm{Rh}-\mathrm{C}$ bond was cleaved to give formate with a low activation energy of $59 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Fig. S15d). The transition state appeared in the step of Rh-C bond scission rather than H transfer, thereby having a low imaginary vibration frequency ($60 \mathrm{i} \mathrm{cm}^{-1}$). We also calculated a one H system, namely hydrogenation of CO_{2} not by $\mathrm{Rh}(-\mathrm{H})_{2}$ but by $\mathrm{Rh}-\mathrm{H}$. In this case, the H transfer gave a transition state with a low activation energy of $46 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Thus, in both cases, formate was produced by activated H species on Rh . Contrastingly, introduction of CO_{2} on undoped $\mathrm{In}_{2} \mathrm{O}_{3}$ produced non-activated carbonate species (not shown). Therefore, we propose that Rh can be involved in the activation of CO_{2} and the hydrogenation.

The atomic coordinates for the important structures are available as follows: Rh doping at the M_{3} site (Table S 4); CO_{2} adsorption on Rh -doped In oxide cluster (Table S5); transition state for CO_{2} hydrogenation by $\mathrm{Rh}(-\mathrm{H})_{2}$ (Table S 6); transition state for CO_{2} hydrogenation by $\mathrm{Rh}-$ H (Table S7).

Table S4. Atomic coordinate and basis sets for Rh-doped In oxide cluster in a format of Gaussian input.

07				
In	0	-3.42265400	-0.05667000	-1.50558300
In	0	0.63949200	0.00526900	-1.31349300
Rh	0	3.94448100	-0.00971700	-1.40172400
0	0	-5.29742900	-0.99376800	-1.97319600
0	0	-3.02971800	-1.74898200	-0.22435100
0	0	-3.63749700	1.11158900	0.30563100
0	0	-1.39698900	0.65734600	-1.41484900
0	0	-0.05041700	-1.74691100	0.18206000
0	0	0.49393700	1.27426200	0.82587400
0	0	2.38271100	-1.29314400	-1.43210300
0	0	2.36001100	1.27530000	-1.58216900
0	0	3.80076800	0.72026100	0.45742000
0	0	5.57930200	-1.25739400	-1.66858000
0	0	5.42826000	1.32980300	-1.65759800
In	-1	0.25780700	-0.62518800	1.87010200
In	-1	1.87926200	-2.84644600	-0.12729300
In	-1	-3.63580600	-0.69040000	1.64335200
In	-1	-1.63864800	1.82223600	0.46722400
In	-1	-5.53731000	2.02079000	0.79663900
In	-1	-1.50242700	-3.24891700	-0.41762500
In	-1	-7.31243000	-0.16706600	-1.92436900
In	-1	-4.90380600	-2.95028100	-0.58529200
In	-1	5.64156000	2.02525700	0.42765900
In	-1	4.15144800	-0.55967600	2.09632500
In	-1	2.24001300	2.32279600	0.25967400
In	-1	5.77750900	-3.04578900	-0.45652200
In	-1	7.24710700	0.23940000	-2.00227100
0	-1	-5.16802900	3.45647500	-0.78931200
0	-1	-7.46692900	3.19078300	0.87337700
0	-1	-1.80254300	3.62378100	-0.73355300
0	-1	4.10472400	3.55021700	0.60139400
0	-1	7.09332300	3.59678800	0.79521600
0	-1	1.77090700	4.14131700	-0.95063100
0	-1	2.26381700	-1.52581900	1.63134700
0	-1	-1.74795800	0.27545800	2.10830700
0	-1	0.40879900	-4.38889700	-0.79868500
0	-1	-8.70311500	-2.15747200	1.36260000
0	-1	-5.33302300	-2.15776100	1.38912800
0	-1	-8.71135300	0.50144000	2.42870900
0	-1	-8.94597800	-1.65066800	-1.57937900
0	-1	-6.67375400	-4.18691500	-0.35927600
0	-1	-7.00811300	0.47968600	0.12549200
0	-1	-5.34128700	0.50123600	2.45524700
0	-1	-3.34836700	-4.54873600	-0.46235500
0	-1	-9.08642600	1.20873200	-1.68256100
0	-1	5.85723700	-1.75150600	1.28434600
0	-1	9.22728800	-1.75169900	1.31089600
0	-1	5.84887700	0.90747400	2.35052800
0	-1	9.18772600	-0.72736000	-1.87503800
0	-1	7.88651500	-3.78087900	-0.43728400
0	-1	7.55264100	0.88543500	0.04735200
0	-1	3.70950900	-3.84019000	-0.74307700
In	-1	-3.55545700	4.96984200	-0.81300900
In	-1	9.02299300	2.42680000	0.71846300
In	-1	-8.91948800	1.61970200	0.50650600
In	-1	-7.02218800	-0.82812000	1.90891800
In	-1	7.53795800	-0.42214700	1.83078500
In	-1	9.65659200	-2.54455000	-0.66386400
In	-1	-8.78284800	-3.45177200	-0.37840300

In	-1	-0.16890400	5.10744100	-1.07853200

Table S4 continue

1-3 0
def2SVP

4-14 0
$6-31+G(d)$

15-27 0
LanL2DZ

28-52 0
3-21+G

53-60 0
LanL2MB

1-3 0
def2SVP
15-27 0
LanL2DZ
53-60 0
LanL2MB

Table S5. Atomic coordinate and basis sets for CO_{2} adsorption on Rh-doped In oxide cluster in a format of Gaussian input.

05				
Rh	0	1.52811300	-0.22590400	-0.70777700
In	0	-2.83281100	-0.31314100	-1.05182100
In	0	3.98855800	-0.12681300	-1.87243200
0	0	0.44891200	1.03149600	0.70681300
0	0	-2.64596800	0.98081300	0.73594300
0	0	-2.88649800	-1.99236800	0.37909900
0	0	-4.75998300	0.16647200	-1.18440600
In	-1	-3.87587500	4.72743900	-1.08937700
In	-1	-2.70128500	-0.77391800	2.08867900
In	-1	-0.98538800	-2.92723200	0.09779700
In	-1	-4.91441000	1.40029800	0.69763000
In	-1	-4.32035100	-3.67257700	0.04290900
In	-1	-6.61576000	-0.79908600	-1.25740700
In	-1	2.29309300	2.30945700	0.18229100
In	-1	1.17269600	-0.31578400	2.06305700
In	-1	4.50668300	0.13712300	1.57573500
In	-1	5.62864200	3.05517200	0.23950500
In	-1	-1.12501200	2.26622500	0.22094800
In	-1	2.88717500	-2.76198400	-0.47048700
In	-1	6.67684400	-1.89713600	-0.94859700
0	-1	-5.32867100	3.11184900	-0.57196000
0	-1	0.62464800	3.68540200	0.38430600
0	-1	3.59927200	4.03334000	0.38465700
0	-1	-1.84456000	3.96339000	-1.04076200
0	-1	-0.63231300	-1.48521000	1.76542600
0	-1	-4.76991300	-0.06133700	2.41273400
0	-1	-2.32988000	-4.63930900	-0.40631600
0	-1	-6.90527700	0.39453300	0.58180000
0	-1	-5.98950700	-2.29869500	0.24271300
0	-1	2.93854100	-1.37737900	1.20010200
0	-1	6.28729400	-1.04690700	1.01096000
0	-1	2.72575300	1.32113400	2.13993700
0	-1	5.95725000	-0.19815700	-2.21002000
0	-1	5.05681600	-3.28618000	-0.55169000
0	-1	4.28425100	1.34192100	-0.26185800
0	-1	0.89624100	-3.76886500	-0.58746200
C	0	-0.19593200	-0.15444700	-1.53206300
0	0	-0.90295000	-1.27159500	-1.52923100
0	0	-0.94179800	0.89542900	-1.64586500
$\begin{aligned} & 1-30 \\ & \text { def2SVP } \\ & * * * * \end{aligned}$				
$4-7 \quad 37-390$ $6-31+G(d)$ $* * * *$				
8-20 0 LanL2DZ $* * * *$				
21-36 0				
3-21+G				

$\begin{aligned} & 1-30 \\ & \text { def2SVP } \end{aligned}$				
$\begin{aligned} & 8-200 \\ & \text { LanL2DZ } \end{aligned}$				

Table S6. Atomic coordinate and basis sets for the transition state of CO_{2} hydrogenation by $\mathrm{Rh}(-\mathrm{H})_{2}$ in a format of Gaussian input.

Table S7. Atomic coordinate and basis sets for the transition state of CO_{2} hydrogenation by $\mathrm{Rh}-\mathrm{H}$ in a format of Gaussian input.

04				
Rh	0	1.51495000	-0.26201400	-0.97009300
In	0	-2.91139200	-0.34992400	-1.02019900
In	0	4.01327800	-0.11830600	-1.85720100
0	0	0.53112300	1.04132500	0.61654500
0	0	-2.63391700	0.98544300	0.73823700
0	0	-2.89992100	-1.99388900	0.41277100
0	0	-4.79934100	0.21412500	-1.19728000
In	-1	-3.86392700	4.73405000	-1.08681300
In	-1	-2.69748000	-0.76034800	2.10624400
In	-1	-0.98159100	-2.92023200	0.12248400
In	-1	-4.90725300	1.41236700	0.70754400
In	-1	-4.31717700	-3.66267900	0.06618600
In	-1	-6.60868500	-0.79038700	-1.24362400
In	-1	2.30158000	2.31367000	0.19702000
In	-1	1.17694100	-0.30580400	2.08328600
In	-1	4.51181600	0.14284200	1.59811100
In	-1	5.63775000	3.05649300	0.25564200
In	-1	-1.11660000	2.27364400	0.23241700
In	-1	2.89167800	-2.75993700	-0.44239800
In	-1	6.68260200	-1.89974300	-0.91895000
0	-1	-5.31870400	3.12109000	-0.56676000
0	-1	0.63419300	3.69163700	0.39392400
0	-1	3.60913000	4.03686900	0.39633000
0	-1	-1.83335900	3.96827900	-1.03427200
0	-1	-0.62884000	-1.47433400	1.78682300
0	-1	-4.76577500	-0.04507300	2.42646500
0	-1	-2.32714700	-4.63234900	-0.37864100
0	-1	-6.89892100	0.40812400	0.59228500
0	-1	-5.98527500	-2.28678000	0.26088500
0	-1	2.94266500	-1.37117500	1.22474800
0	-1	6.29190200	-1.04422600	1.03807500
0	-1	2.73141400	1.32989000	2.15757400
0	-1	5.96579800	-0.20329400	-2.18535600
0	-1	5.06091900	-3.28631000	-0.52014300
0	-1	4.29229000	1.34320800	-0.24272900
0	-1	0.89994300	-3.76529900	-0.55879900
C	0	-0.34430400	-0.26536300	-1.62533000
0	0	-1.03472400	-1.37469700	-1.59643900
0	0	-1.05804700	0.80181800	-1.67820800
H	0	0.92428600	-0.25195200	-2.47014600
$\begin{aligned} & 1-30 \\ & \text { def2SVP } \\ & * * * * \end{aligned}$				
$\begin{aligned} & 4-7 \quad 37-40 \quad 0 \\ & 6-31++G(d, p) \\ & * * * * \end{aligned}$				
$\begin{aligned} & 8-200 \\ & \text { LanL2DZ } \end{aligned}$				
21-36 0				
$3-21+G$				
$\begin{aligned} & 1-30 \\ & \text { def2SVP } \\ & 8-200 \\ & \text { LanL2DZ } \end{aligned}$				

References

1 S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309.
2 B. Ravel and M. Newville, J. Synchrotron Rad., 2005, 12, 537; M. Newville and J. Synchrotron Rad., 2001, 8, 96.

3 S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers and M. J. Eller, Phys. Rev. B, 1995, 52, 2995-3009.

4 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396; B. I. Dunlap, J. Chem. Phys., 1983, 78, 3140.

5 R. Gulde, P. Pollak and F. Weigend, J. Chem. Theory Comput., 2012, 8, 4062; R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys. 1971, 54, 724; P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270; W. R. Wadt and, P. J. Hay, J. Chem. Phys., 1985, 82, 284; P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.

6 S. Grimme, J.Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.
7 J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982; C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.

8 R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang and T. Zhang, Angew. Chem. Int. Ed., 2016, 55, 16054.

9 A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, J. Chem. Theory Comput., 2012, 8, 527.

10 X. Zhang, G. Liu, K. H. M. Broer, G. Ganteför and K. Bowen, Angew. Chem. Int. Ed., 2016, 55, 9644.

