Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Operando X-Ray Absorption Spectroscopy of Pd/γ-NiOOH 2nm cubes Hydrogen Oxidation Catalyst in Alkaline Membrane Fuel Cell

Maria Alesker^a, Istvan Bakos^b, Veronica Davies^c, Qingying Jia^c, Luba Burlaka^a, Valeria Yarmiayev^a, Anya Muzikansky^a, Anna Kitayev^{a,d}, Miles Page^d, Sanjeev Mukerjee^c, David Zitoun^{a*}

^a Bar Ilan University, Department of Chemistry, Bar Ilan Institute of Technology and Advanced Materials (BINA), Ramat Gan, 52900, Israel.

^b Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, Budapest, Hungary

> ^cDepartment of Chemistry and Chemical Biology Northeastern University, Boston, MA 02115

^dPO-CellTech Ltd. Hatochen 2, Caesarea Business and Industrial Park, Caesarea, 30889 Israel

david.zitoun@biu.ac.il

Fig. S1: TEM of the pristine C/Pd sample (A-B) and C/Pd/NiOOH sample (C-D)

Fig. S2: HRTEM image of Pd/γ-NiOOH with corresponding FFT (insets).

Fig. S3: HRTEM image of Pd/ γ -NiOOH with corresponding FFT (insets).

Fig. S4: (a) Energy Dispersive X-ray spectroscopy with the corresponding table of weight and atomic ratios.(b) HAADF-STEM elemental mapping showing the carbon (green), palladium (blue) and nickel (red) distribution (note that a slight drift occurred during the acquisition)

Extraction of the specific activity, mass activity, and exchange current density

The kinetic currents for HOR in alkaline media at 0.01 V vs. RHE were calculated based on the Koutecky– Levich equation[1].

$$I_k = I * I_d / (I_d - I)$$

where I is the measured current (from RDE), and Id indicates the diffusion limited current.

The kinetic currents for HOR in alkaline media at 0.01 V vs. RHE were then normalized to the mass of metals to obtain the mass activity.

$$I_m = I_k / M_m$$

The electrochemical surface area of catalysts (ECSA), was determined from the cathodic peak at 0.65 V/RHE, which is related to the reduction of oxygen species on Pd [2]

The kinetic currents for HOR in alkaline media at 0.01 V vs. RHE were then normalized to the electrochemical surface area to obtain the specific activity.

$$I_{k,s} = I_k / ECSA$$

The exchange current density (i_0) was calculated from the Tafel plots extracted from the plot of Nernstian overpotential (η_d) vs. kinetic current (i_k) .

Catalyst	Exchange current density i ₀ [mA/cm ² _{PGM}]	ECSA [m²/gPGM]	Mass activity i _m [A/g PGM] @0.01V	Mass activity i _m [A/g PGM] @0.1V	I _s [mA/cm ² PGM] @0.01V	J @ 0.8V in AEMFC [A/mgPGM]	Reference
Pd/γ- NiOOH/C	0.2	98	48	760	0.05	0.75	This study
Ir ₃ Pd ₁ Ru ₆ /C	0.6	110	340	2890	0.28	2	9, 31
Pd/C	0.025-0.05	122	8	269[3]	0.006	0.052	9, This study
NiPd/C	calculation of exchange current density is very challenging since the specific surface for each metal (Ni and Pd species) is difficult to determine for such a nanocomposite					0.33	20
Pd/C-CeO ₂	0.05-0.1	43	9-18	1100ª	0.02-0.04 ^b	0.5	26
Pd/C-CeO ₂							27

Table S1: Comparison between the Pd-based anode materials for AEMFCs

^a calculated based on Tafel slope (66 mV/dec)

 $^{\text{b}}$ calculated from Butler-Volmer equation for low η

References

[1] W. Sheng, H.A. Gasteiger, Y. Shao-Horn, Hydrogen Oxidation and Evolution Reaction Kinetics on

Platinum: Acid vs Alkaline Electrolytes, Journal of The Electrochemical Society. 157 (2010) B1529. https://doi.org/10.1149/1.3483106.

- [2] M. Lukaszewski, M. Soszko, A. Czerwiński, Electrochemical methods of real surface area determination of noble metal electrodes - an overview, International Journal of Electrochemical Science. 11 (2016) 4442–4469. https://doi.org/10.20964/2016.06.71.
- [3] E.S. Davydova, S. Mukerjee, F. Jaouen, D.R. Dekel, Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes, ACS Catalysis. 8 (2018) 6665–6690. https://doi.org/10.1021/acscatal.8b00689.