Supplementary Material

A peanut shell-derived economical and eco-friendly biochar catalyst for electrochemical ammonia synthesis under ambient conditions: combined experimental and theoretical study

Anmin Liu ^{a,*}, Yanan Yang ^a, Xuefeng Ren ^{b,*}, Mengfan Gao^a, Xingyou Liang^a, Tingli Ma^{c, d,*}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, China.

E-mail: anmin0127@163.com, liuanmin@dlut.edu.cn

^b School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.

E-mail: renxuefeng@dlut.edu.cn

^c Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

^d Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

E-mail: tinglima@life.kyutech.ac.jp

Fig. S1. (a) UV-vis spectra for NH_4^+ standard solutions with different concentrations, (b) the calibration curve for NH_4^+ quantification.

Fig. S2. (a) UV-vis spectra for N₂H₄ standard solutions with different concentrations, (b) the calibration curve for N₂H₄ quantification.

Fig. S3. XPS survey of biochar catalyst (a) before reaction, (b) after reaction.

Fig. S4. High resolution XPS spectra of (a) C 1s, (b) N 1s, (c) O 1s, and (d) S 2p of the biochar catalysts after rection.

Elements	C 1s	N 1s	O 1s	S 2p	К 2р
Before	88.41	1.43	9.22	0.34	0.61
After	92.02	0.66	5.03	0.13	2.17

Table. S1. The percentage of each element in the biochar catalyst before and after the reaction.

Fig. S5. UV-visible spectra of the electrolyte stained by indophenol blue indicator after 2 h of reduction reaction in N_2 saturated 0.1 M KOH at various potential. (a) biochar ,(b) graphite.

Fig. S6. UV-visible test of the electrolyte after reaction at -0.4 V vs. RHE.

Fig. S7. Ammonia yield in N₂ and Ar environments at -0.4 V vs. RHE potential.

Fig. S8. UV-visible test of N₂H₄ of electrolytes after different potentials.

Fig. S9. UV-visible test of 7 cycles of reaction at -0.4 V vs. RHE potential.

Fig. S10. i - t curves of 7 cycles of reaction at a potential of -0.4 V vs. RHE.

Fig. S11 Free energy diagrams of NRR at the peanut shell-derived biochar with Bio-O37 as active site.

Fig. S12 Free energy diagrams of NRR at the peanut shell-derived biochar with Bio-O15 as active site.

Fig. S14 Free energy diagrams of NRR at the peanut shell-derived biochar with Bio-O37 as active site.

Fig. S15 Free energy diagrams of NRR at the peanut shell-derived biochar with Bio-S58 as active site.

Fig. S16 Free energy diagrams of NRR for Dissociative pathway on these six biochar active sites of Bio-N4, Bio-

O37, Bio-O15, Bio-O21, Bio-O52, and Bio-S58.

Fig. S17 Free energy diagrams of NRR for Dissociation of NNH₂ on these six biochar active sites of Bio-N4, Bio-O37, Bio-O15, Bio-O21, Bio-O52, and Bio-S58.

Fig. S18 Free energy diagrams of NRR for Dissociation of HNNH₂ on these six biochar active sites of Bio-N4,

Bio-O37, Bio-O15, Bio-O21, Bio-O52, and Bio-S58.

Fig. S19 Free energy diagrams of NRR for Dissocition of H₂NNH₂ on these six biochar active sites of Bio-N4, Bio-O37, Bio-O15, Bio-O21, Bio-O52, and Bio-S58.

Carbon species	Source	Preparation conditions	Reaction conditions	Reaction potential	Ammonia yield	FE (%)	Ref.
N-doped porous carbon	ZIF-8	N ₂ ; 1100°C; 1 h	0.1 М КОН	-0.3 V vs. RHE	3.4×10^{-6} mol cm ⁻² h ⁻¹	10.2	[1] ¹
	ZIF-8	$H_2/N_2;750^\circ\!\!C;5~h$	0.05 M H ₂ SO ₄	-0.9 V vs. RHE	6.0×10^{-7} mol cm ⁻² h ⁻¹	1.5	[2] ²
	ZIF-67	N ₂ ; 500°C; 3 h Air; 250°C; 10 h	0.05 M H ₂ SO ₄	-0.2 V vs. RHE	42.58×10^{-6} g h ⁻¹ mg ⁻¹ _{cat.}	8.5	[3] ³
Fe-N/C- CNTs	(CH ₃ COO) ₂ Fe; Multiwall carbon nanotubes; ZIF-8	N ₂ ; 1000°C; 1 h	0.1 M KOH	-0.2 V vs. RHE	34.83×10^{-6} g h ⁻¹ mg ⁻¹ cat.	9.28	[4] ⁴
Carbon nanotubes	Fe ₂ O ₃ ; Carbon nanotubes	350°C; 2 h	KHCO3	-2.0 V <i>vs.</i> Ag/AgCl	1.3×10^{-8} mol cm ⁻² h ⁻¹	0.15	[5]5
	Carbon nanotubes	HNO ₃ ; 80°C; 24 h	0.1 M LiClO ₄	-0.4 V vs. RHE	33.23×10^{-6} g h ⁻¹ mg ⁻¹ cat.	12.5	[6]6
Polymeric carbon nitride	Melamine	Ar; 550°C; 4 h Ar; 620°C; 4 h	0.1 M LiClO ₄	-0.2 V vs. RHE	8.09×10^{-6} g h ⁻¹ mg ⁻¹ _{cat.}	11.59	[7] ⁷
B-doped graphene	H ₃ BO ₃ ; Graphene oxide	H ₂ /Ar; 900°C;3 h	0.05 M H ₂ SO ₄	-0.5 V vs. RHE	5.76×10^{-7} g h ⁻¹ mg ⁻¹ _{cat.}	10.8	[8] ⁸
Graphene oxide	PdCl ₂ ; CuCl ₂ ; Graphene oxide	Ar; stirring for 2 h	0.1 М КОН	-0.2 V vs. RHE	2.80×10^{-6} g h ⁻¹ mg ⁻¹ cat.	4.5 (0.0 V vs RHE)	[9]9
	CeCl ₃ ·7H ₂ O; Graphene oxide	Hydrothermal; 160°C; 24 h	0.1 M Na ₂ SO ₄	-0.7 V vs. RHE	16.98×10^{-6} g h ⁻¹ mg ⁻¹ _{cat.}	4.78	[10] ¹⁰
	Na ₂ CrO ₄ ; Graphene oxide	Hydrothermal; 150℃; 24 h Ar; 700°C; 1 h	0.1 M HCl	-0.7 V vs. RHE	33.3×10^{-6} g h ⁻¹ mg ⁻¹ _{cat.}	7.33 (-0.6 V vs RHE)	[11]11
S-doped carbon Nanospheres	Glucose; Benzyl disulfide	180°C; 10 h Ar; 800°C; 2 h	0.1 M Na ₂ SO ₄	-0.7 V vs. RHE	19.07×10^{-6} g h ⁻¹ mg ⁻¹ cat.	7.47	[12] ¹²
Sulfur dots – graphene	Graphite rods; Na ₂ SO ₄ ; Na ₂ S	Electrochemical process	0.5 M LiClO4	-0.85 V vs. RHE	28.56×10^{-6} g h ⁻¹ mg ⁻¹ _{cat.}	7.07	[13] ¹³
Biochar	Peanut shells	N ₂ ; 1100°C; 1 h	0.1 М КОН	-0.4 V vs. RHE	$\begin{array}{c} 2.32\times 10^{-6} \\ mol \ h^{-1} \ cm^{-2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	26.97	This work

Reference

1. S. Mukherjee, D. A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K. L. More, G. Wang and G. Wu, *Nano Energy*, 2018, **48**, 217-226

2. Yanming Liu, Yan Su, Xie Quan, Xinfei Fan, Shuo Chen, Hongtao Yu, Huimin Zhao, Yaobin Zhang and J. Zhao, ACS Catal., 2018, **8**, 1186-1191

3. S. Luo, X. Li, B. Zhang, Z. Luo and M. Luo, ACS App. I Mater. Interfaces, 2019, 11, 26891-26897

4. Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang and W. Zheng, ACS Catal., 2018, **9**, 336-344

5. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Angew. Chem. Int. Edit., 2017, 56, 2699-2703

6. J. Zhao, B. Wang, Q. Zhou, H. Wang, X. Li, H. Chen, Q. Wei, D. Wu, Y. Luo, J. You, F. F. Gong and X. Sun, *Chem. Commun.*, 2019, **55**, 4997-5000

7. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, Angew. Chem. Int. Edit., 2018, 57, 10246-10250

8. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, Joule, 2018, 2, 1610-1622

9. M.-M. Shi, D. Bao, S.-J. Li, B.-R. Wulan, J.-M. Yan and Q. Jiang, Adv. Energy Mater., 2018, 8, 1800124

10. H. Xie, Q. Geng, X. Li, T. Wang, Y. Luo, A. A. Alshehri, K. A. Alzahrani, B. Li, Z. Wang and J. Mao, *Chem. Commun.*, 2019, **55**, 10717-10720

11. L. Xia, B. Li, Y. Zhang, R. Zhang, L. Ji, H. Chen, G. Cui, H. Zheng, X. Sun, F. Xie and Q. Liu, *Inorg. Chem.*, 2019, **58**, 2257-2260

12. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, Small Methods, 2018, 3, 1800251

13. H. Chen, X. Zhu, H. Huang, H. Wang, T. Wang, R. Zhao, H. Zheng, A. M. Asiri, Y. Luo and X. Sun, *Chem. Commun.*, 2019, **55**, 3152-3155