Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

Figure S1. XRD patterns of Pd/TiO₂ and Pd-M/TiO₂ samples, (a) 1Pd/TiO₂, (b) 1Pd-5Fe/TiO₂, (c) 1Pd-5Co/TiO₂, (d) 1Pd-5Cu/TiO₂.

Figure S2. Time-resolved DRIFT spectra showing accumulation of surface species over 1Pd-5Cu/TiO₂ catalyst at 150 °C obtained following switch from 2000 ppm H₂ + 200 ppm NO + 1.5% O₂ to a flow containing 200 ppm NO + 1.5% O₂.

Figure S3. Evolution of IR height of the surface species over 1Pd-5Cu/TiO₂ catalyst obtained following switch from 2000 ppm H₂ + 200 ppm NO + 1.5 vol% O₂ to a flow containing 200 ppm NO + 1.5 vol% O₂.

Figure S4. Time-resolved DRIFT spectra showing accumulation of surface species over 1Pd-5Cu/TiO₂ catalyst at 150 °C obtained following switch from 200 ppm NO + 1.5% O₂ to a flow containing 2000 ppm H₂ + 200 ppm NO + 1.5% O₂.

Figure S5. Evolution of IR height of the surface species over 1Pd-5Cu/TiO₂ catalyst obtained following switch from 200 ppm NO + 1.5 vol% O₂ to a flow containing 2000 ppm H₂ + 200 ppm NO + 1.5 vol% O₂.