Insight into the Chemoselective Aromatic vs Side-chain Hydroxylation of Alkylaromatics with H₂O₂ Catalyzed by a Non-Heme Imine Based Iron Complex

Barbara Ticconi,^a Giorgio Capocasa,^a Andrea Cerrato,^a Stefano Di Stefano,^a Andrea Lapi,^a Beatrice Marincioni,^a Giorgio Olivo^b and Osvaldo Lanzalunga^{a,*}

^aDipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy

^bDepartment Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain

*Corresponding author, email: <u>osvaldo.lanzalunga@uniroma1.it</u>

Electronic Supplementary Information

Contents

Instruments and general methods	2
GC traces for selected oxidations of alkylaromatics with H_2O_2	
based iron complex 1	4
Oxidation of toluene	4
Oxidation of ethylbenzene	
Oxidation of diphenylmethane	5
Oxidation of fluorene	5
Oxidation of dihydroanthracene	6
Oxidation of dihydroanthracene-d4	6
Oxidation of xanthene	7
Oxidation of xanthene- <i>d2</i>	7
¹ H NMR spectra for selected oxidations of alkylaromatics wheme imine based iron complex 1	
Oxidation of DHA	
Oxidation of DHA-d4	
Oxidation of xanthene	11
Oxidation of xanthene-d2	

Instruments and general methods

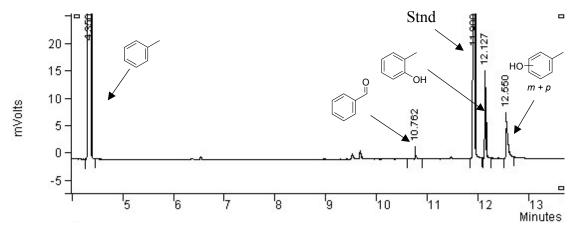
NMR spectra were recorded on a Bruker300 spectrometer and were internally referenced to the proton solvent signal. GC analyses were carried out on a gas chromatograph equipped with a capillary methylsilicone column (30 m x 0.25 mm x 25 µm) Chrompack CP-Sil 5 CB and a capillary nitroterephthalic acid modified polyethylene glycol column (30 m x 0.25 mm x 25 μm) Zebron ZB-FFAP. GC-MS analyses were performed with a gas chromatograph equipped with a silica capillary column (30 m x 0.2 mm x 25 µm) OV5 (95% methylsilicone, 5% phenylsilicone) coupled with a mass detector (EI, 70eV). Oxidation products were identified by comparison of their GC retention times, GC/MS and ¹H NMR spectra with those of authentic specimens or by comparison of their spectral data with those reported in the literature. Oxidations were carried out by mixing Fe(CF₃SO₃)₂(CH₃CN)₂ (2.50 µmol), picolylamine (5.0 μmol) and picolylaldehyde (5.0 μmol) in a vial at 25 °C. Substrate (250 μmol) and CH₃CN were then added up to a total volume of 1 mL. A solution 1.74 M of H₂O₂ in CH₃CN was then added over 30 minutes by syringe pump under vigorous stirring, and left reacting for additional 1 hour. In the oxidation of xanthene-d2, silvlation of hydroxylated products was required for their quantitative analysis. Reaction crude was placed in a round bottom flask and diluted with 200 µL of toluene. N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) (1 equiv.) was added to the solution and the mixture was heated at 60°C for 2 h.

After addition of an internal standard, reaction mixtures were filtered over a short pad of SiO2 with 10 mL of AcOEt and analyzed by GC, GC-MS and ¹H NMR.

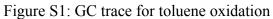
Oxidation products were identified by comparison with authentic specimens or by comparison of their spectral data with those reported in the literature.

1-Hydroxydihydroanthracene, 2-hydroxydihydroanthracene, were isolated by column chromatography from the crude reaction mixture of dihydroanthracene oxidation carried out

under the same reaction conditions reported above using 25 μ mol of Fe(CF₃SO₃)₂(CH₃CN)₂, 50 μ mol of picolylamine and picolylaldehyde, 2.5 mmol of dihydroanthracene and 0.5 mmol of H₂O₂ in 10 mL of CH₃CN. Products were characterized as follows:


1-hydroxy-9,10-dihydroanthracene:

¹H-NMR (300 MHz, CDCl₃) δ : 7.34-7.18 (*m*, 2H), 7.09-7.04 (*t*, *J* = 7.6 Hz, 2H), 6.91- 6.89 (*d*, *J* = 7.6 Hz, 2H), 6.88-6.86 (*d*, *J* = 7.6 Hz, 2H), 4.86 (*br s*, 1H), 3.96 (*s*, 4H). ¹³C-NMR (75 MHz, CDCl₃) δ : 138.3, 136.0, 135.5, 128.8, 127.8, 127.4, 126.6, 126.1, 126.0, 120.1, 112.4, 35.6, 28.5. GC-MS *m/z* (rel. intensity): M⁺ 196 (100), 195 (86), 194 (17), 181 (11), 179 (20), 178 (16), 177 (18), 167 (29), 166 (14), 165 (42), 152 (14). HRMS (ESI⁺, *m/z*): calcd for (C₁₄H₁₃O)⁺ (M+H)⁺: 197.0966; found 197.0972.


2-hydroxy-9,10-dihydroanthracene:

¹H-NMR (300 MHz, CDCl₃) δ : 7.29-7.27 (*m*, 2H), 7.23-7.19 (*m*, 2H), 7.15 (*d*, *J* = 8.1 Hz, 2H), 6.80 (*d*, *J* = 2.5 Hz, 2H), 6.68 (*dd*, *J* = 8.1, 2.5 Hz, 2H), 4.86 (*br s*, 1H), 3.89 (*s*, 4H). ¹³C-NMR (75 MHz, CDCl₃) δ : 153.7, 138.1, 136.9, 136.2, 128.8, 128.3, 127.3, 126.0, 125.9, 114.1, 112.9, 36.1, 35.1. GC-MS *m*/*z* (rel. intensity): M⁺ 196 (100), 195 (70), 194 (17), 181 (14), 179 (39), 178 (19), 177 (17), 167 (23), 166 (13), 165 (44), 152 (17). HRMS (ESI⁺, *m*/*z*): calcd for (C₁₄H₁₃O)⁺ (M+H)⁺: 197.0966; found 197.0977.

GC traces for selected oxidations of alkylaromatics with H_2O_2 catalyzed by the non-heme imine based iron complex 1

Oxidation of toluene

Oxidation of ethylbenzene

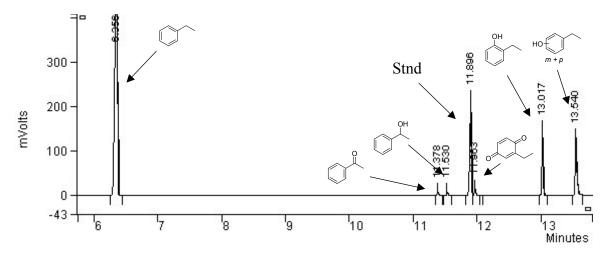


Figure S2: GC trace for ethylbenzene oxidation

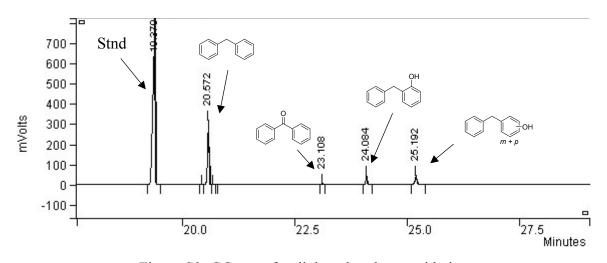
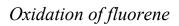



Figure S3: GC trace for diphenylmethane oxidation

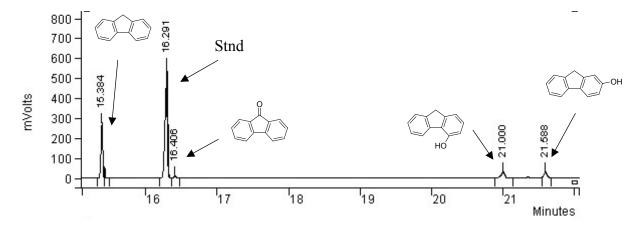


Figure S4: GC trace for fluorene oxidation

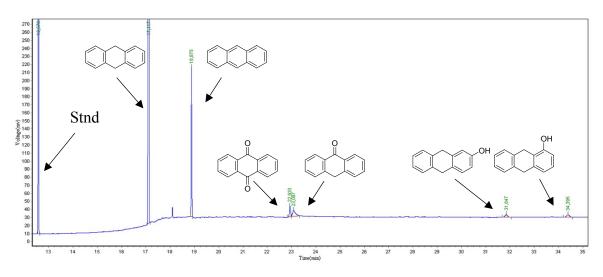


Figure S5: GC trace for dihydroanthracene oxidation

Oxidation of dihydroanthracene-d4

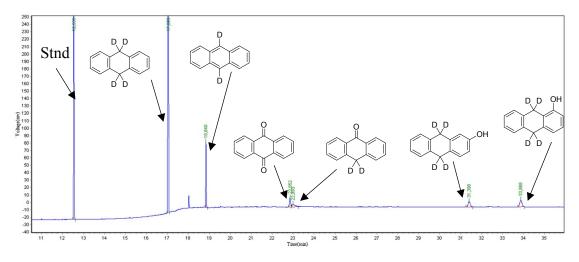
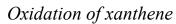



Figure S6: GC trace for dihydroanthracene-d4 oxidation

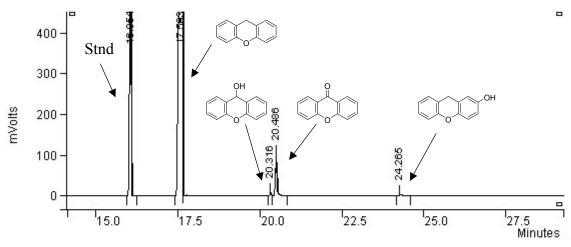


Figure S7: GC trace for xanthene oxidation

Oxidation of xanthene-d2

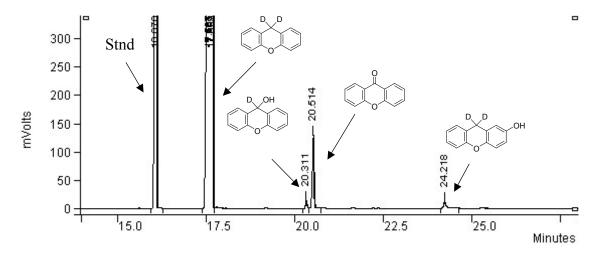
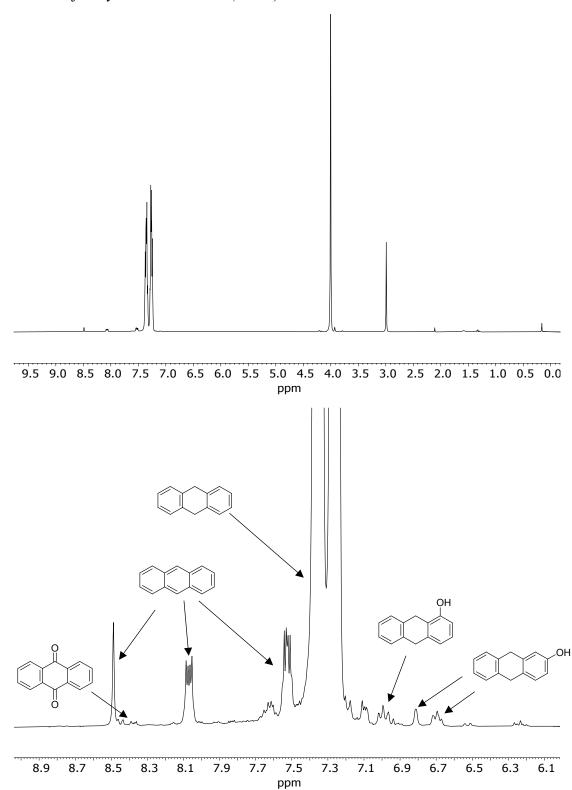



Figure S8: GC trace for xanthene-d2 oxidation

 1 H NMR spectra for selected oxidations of alkylaromatics with $H_{2}O_{2}$ catalyzed by the non-heme imine based iron complex **1**

Oxidation of dihydroanthracene (DHA)

Figure S9: ¹H-NMR spectrum for DHA oxidation

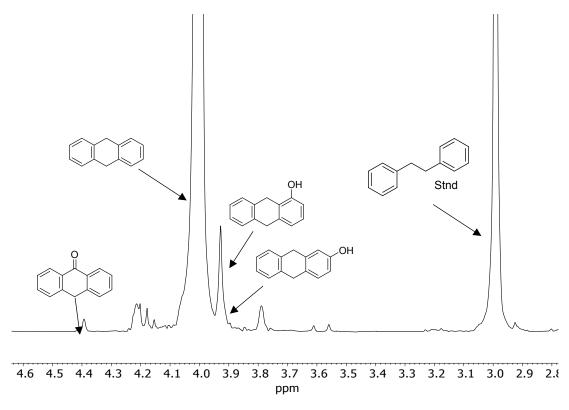


Figure S9: ¹H-NMR spectrum for DHA oxidation (continue)

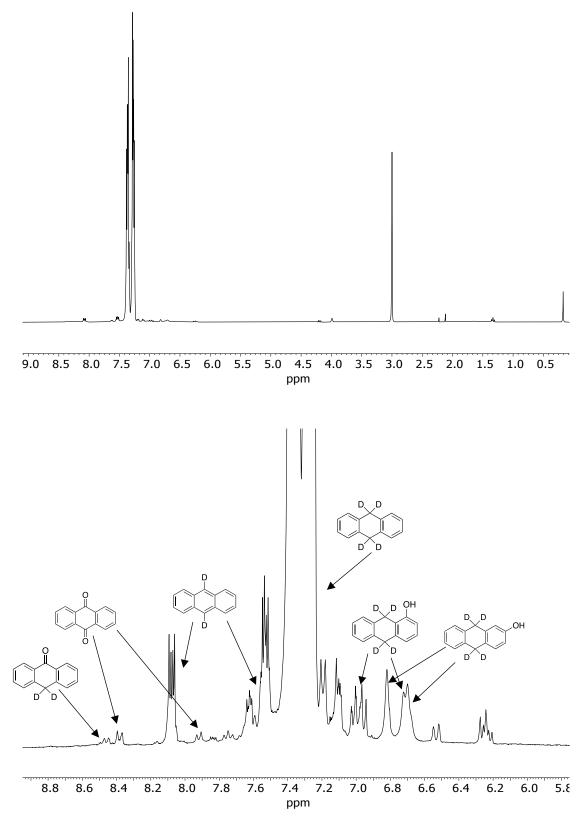
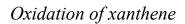



Figure S10: ¹H-NMR spectrum for DHA-*d4* oxidation.

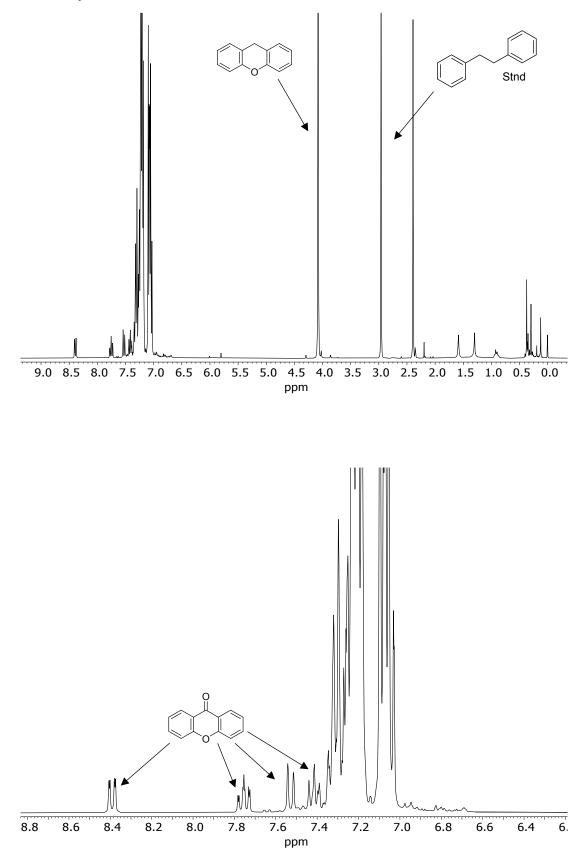


Figure S11: ¹H-NMR spectrum for xanthene oxidation after derivatization with BSTFA.

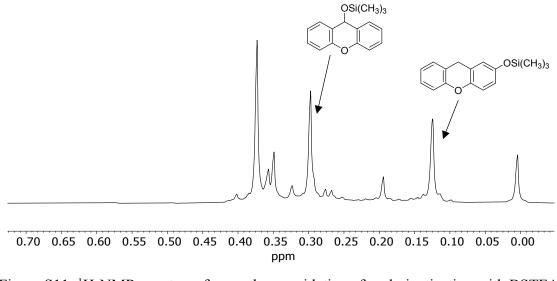
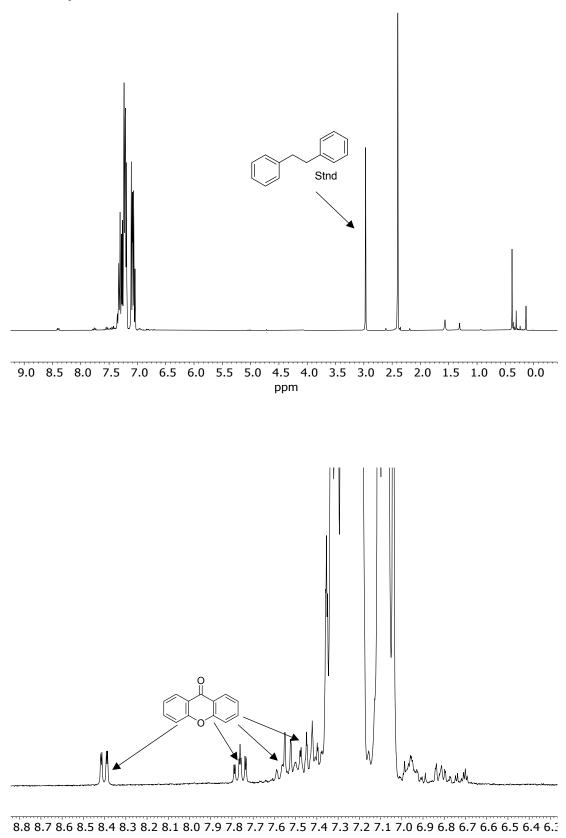
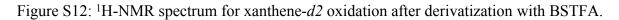




Figure S11: ¹H-NMR spectrum for xanthene oxidation after derivatization with BSTFA. (continue)

Oxidation of xanthene-d2

ppm

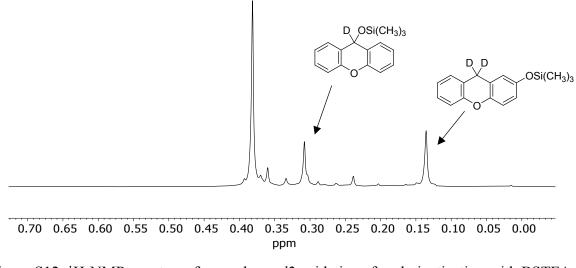


Figure S12: ¹H-NMR spectrum for xanthene-*d2* oxidation after derivatization with BSTFA. (continue).