Supporting Information

Highly Efficient Ru/CeO₂ Catalyst for Formaldehyde Oxidation at Low Temperature and Mechanistic Study

Xiaoxiao Qin, ^{a b} Xueyan Chen, ^{a b} Min Chen, ^{a b} Jianghao Zhang, ^{a b} Hong

He^{abc} and Changbin Zhang^{*ab}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

^b University of Chinese Academy of Sciences, Beijing, 100049, China.

^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.

* E-mail: cbzhang@rcees.ac.cn; Tel./Fax: +86-10-62849801

Experimental

Catalyst Characterization

The CO pulse experiments were carried out on Chemisorption Analyzer (AutoChem 2920) equipped with a TCD detector to identify real active reaction surface area of Ru/CeO₂ or Ru/Al₂O₃. The catalysts were pretreated in the H₂ flow at 300 °C for 1 h. Pulse chemisorption was next carried out at 50 °C. Several pulses of CO were injected at regular intervals, until the area of the recorded peaks became constant. Active reaction surface area (S) was calculated from the amount of adsorbed CO based on the assumption that the stoichiometry factor of chemisorbed CO to surface Ru equals 1:1.^{1,2}

$$S = \frac{1}{2}abN_A M_a$$

Where a and b are the lattice distance of RuO₂ (110), a = 3.12 Å, b = 6.43 Å.⁴ N_A is Avogadro's number, $N_A = 6.02 \times 10^{23}$. M_a is the adsorbed quantity of CO.

List of Table Captions

Table S1. Active reaction surface area of Ru/CeO_2 and Ru/Al_2O_3 samples

List of Figure Captions

Figure S1. HRTEM images of CeO_2 (a) and Ru/CeO_2 -F (b) and HAADF/STEM images of Ru/CeO_2 -F (c, d, bright field) and Ru/Al_2O_3 -F (e, f, bright field)

Figure S2. In situ DRIFTS over Ru/CeO₂-F after 1) a flow of He + CO (a) or He + CO₂ (b) for 60 min followed by 2) He purging for 60 min and finally 3) He + O₂ + H₂O for 30 min at 85 °C. For the dynamic time sequence of the DRIFTS spectra, see the Supporting Information, Figure S6 and S7. Reaction conditions: CO 300 ppm (a) or CO₂ 300 ppm (b), He balance, total flow rate of 100 cm³ min⁻¹

Figure S3. Results of stability testing performed at 85 °C under conditions with 300 ppm of CO₂, 130 ppm of HCHO and GHSV 100000 mL/(g_{cat} h)

Figure S4. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + HCHO + O_2 + H₂O, (b) He purging, (c) O_2 purging and (d) He + O_2 + H₂O at 85 °C. Reaction conditions: HCHO 130 ppm, O_2 20%, RH 35%, He balance, total flow rate of 100 cm³ min⁻¹

Figure S5. Dynamic changes of in situ DRIFTS for the Ru/Al₂O₃-F catalyst as a function of time in a flow of (a) He + HCHO + O₂ + H₂O, (b) He purging, (c) O₂ purging and (d) He + O₂ + H₂O at 160 °C. Reaction conditions: HCHO 130 ppm, O₂ 20%, RH 35%, He balance, total flow rate of 100 cm³ min⁻¹

Figure S6. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + CO, (b) He purging and (c) He + O_2 + H_2O at 85 °C. Reaction conditions: CO 300 ppm, He balance, total flow rate of 100 cm³ min⁻¹

Figure S7. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + CO₂, (b) He purging and (c) He + O₂ + H₂O at 85 °C. Reaction conditions: CO₂ 300 ppm, He balance, total flow rate of 100 cm³ min⁻¹

Samples	Adsorbed quantity (mmol/g)	Reaction surface area (m^2/g)
Ru/CeO ₂	0.020437	1.04*
Ru/Al ₂ O ₃	0.006222	0.38
CeO ₂	0.003160	-

Table S1. Active reaction surface area of Ru/CeO_2 and Ru/Al_2O_3 samples

* calculated by the difference of CO adsorbed quantities between Ru/CeO_2 and pure CeO_2 .

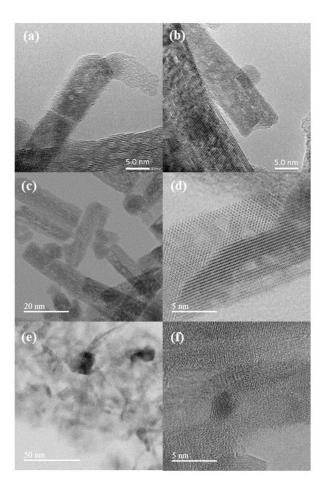
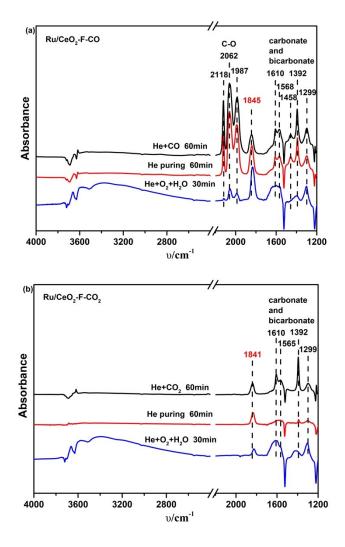
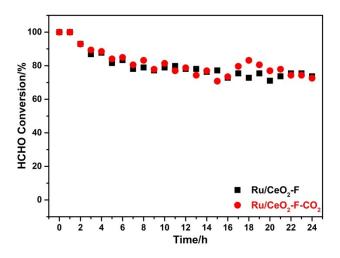
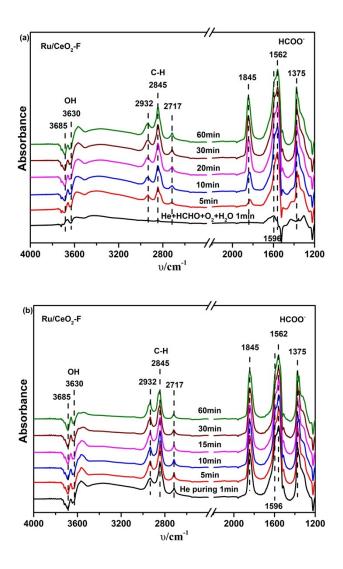
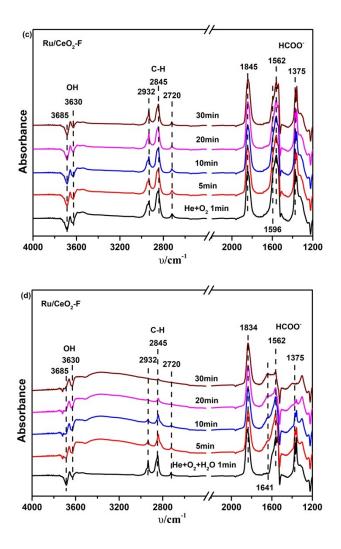
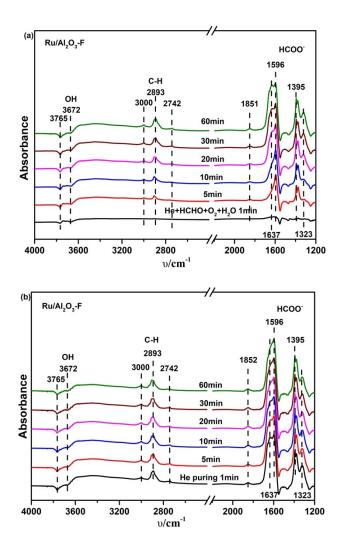
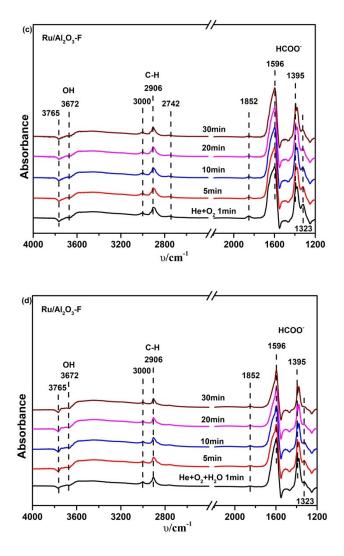



Figure S1. HRTEM images of CeO_2 (a) and Ru/CeO_2 -F (b) and HAADF/STEM images of Ru/CeO_2 -F (c, d, bright field) and Ru/Al_2O_3 -F (e, f, bright field).

Figure S2. In situ DRIFTS over Ru/CeO₂-F after 1) a flow of He + CO (a) or He + CO₂ (b) for 60 min followed by 2) He purging for 60 min and finally 3) He + O₂ + H₂O for 30 min at 85 °C. For the dynamic time sequence of the DRIFTS spectra, see the Supporting Information, Figure S6 and S7. Reaction conditions: CO 300 ppm (a) or CO₂ 300 ppm (b), He balance, total flow rate of 100 cm³ min⁻¹.


Figure S3. Results of stability testing performed at 85 °C under conditions with 300 ppm of CO_2 , 130 ppm of HCHO and GHSV 100000 mL/(g_{cat} h).

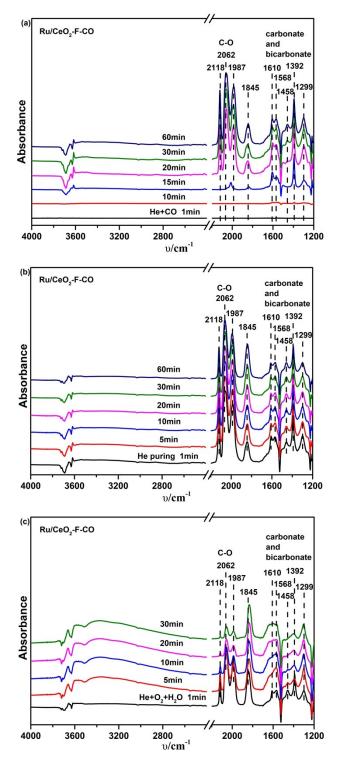


Figure S4. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + HCHO + O_2 + H₂O, (b) He purging, (c) O_2 purging and (d) He + O_2 + H₂O at 85 °C. Reaction conditions: HCHO 130 ppm, O_2 20%, RH 35%, He balance, total flow rate of 100 cm³ min⁻¹.

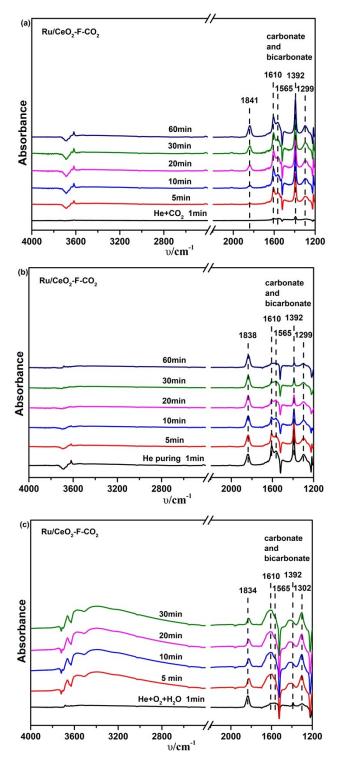


Figure S5. Dynamic changes of in situ DRIFTS for the Ru/Al₂O₃-F catalyst as a function of time in a flow of (a) He + HCHO + O₂ + H₂O, (b) He purging, (c) O₂ purging and (d) He + O₂ + H₂O at 160 °C. Reaction conditions: HCHO 130 ppm, O₂ 20%, RH 35%, He balance, total flow rate of 100 cm³ min⁻¹.

Figure S6. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + CO, (b) He purging and (c) He + O_2 + H₂O at 85 °C. Reaction conditions: CO 300 ppm, He balance, total flow rate of 100 cm³ min⁻¹.

Figure S7. Dynamic changes of in situ DRIFTS for the Ru/CeO₂-F catalyst as a function of time in a flow of (a) He + CO₂, (b) He purging and (c) He + O₂ + H₂O at 85 °C. Reaction conditions: CO₂ 300 ppm, He balance, total flow rate of 100 cm³ min⁻¹.

Reference

- 1. L. Chen, Y. Zhu, H. Zheng, C. Zhang and Y. Li, *Applied Catalysis A: General*, 2012, **411-412**, 95-104.
- 2. C. Newman, X. Zhou, B. Goundie, I. T. Ghampson, R. A. Pollock, Z. Ross, M. C. Wheeler, R. W. Meulenberg, R. N. Austin and B. G. Frederick, *Applied Catalysis A: General*, 2014, **477**, 64-74.
- 3. L. Torrente-Murciano, J Nanopart Res, 2016, 18, 87.
- 4. K. Reuter and M. Scheffler, *Physical Review B*, 2006, **73**.