Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Improved ammonia synthesis activity of Ce doped barium tantalate supported Ru catalysts

Jia Huang,^{a,b} Yushi Zhao,^{a,b} Mingwei Yuan,^{a,b} Jinjun Li,^a Zhixiong You^{*,a,b}

^a School of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, P.R. China.

E-mail: zyou@whu.edu.cn; Fax:+86 27-68778893; Tel: +86 27-68778936

^b International Cooperation Base for Sustainable Utilization of Resources and Energy in Hubei

Province, Wuhan 430072, P.R. China

Table: 5

Figure: 9

1. Experimental

1.1 Catalyst preparation

The Ce/BTO samples were prepared via a hydrothermal process.¹ All reagents are analytical grade and used without further purification. The 6.300 g Ba(OH)₂·8H₂O (20.0 mmol) and 0.550 g Ta₂O₅ (1.25 mmol) were added into 45 mL of pure water and stirred for 1 h. Ce(NO₃)₃·6H₂O was dissolved in 15 mL of pure water and dropped into the above solution and stirred for 30 min. Then, the mixture was transferred into a Teflon-lined autoclave (100 mL) and treated at 200 °C for 7 days. The light yellow product was recovered by filtering and washed repeatedly with pure water until the pH of the filtrate was nearly neutral. Finally the sample was dried at 60 °C in an oven for 12 h. The weights of Ce(NO₃)₃·6H₂O are 0.077g, 0.154g, 0.231g and 0.308g, respectively, and they are named 1Ce/BTO, 2Ce/BTO, 3Ce/BTO and 4Ce/BTO according to the weight from small to large. The Ce was used to replace Ta element to prepare the sample of BCO and the other processes were kept consistent.

Ru catalysts were prepared according to the previously reported method.² The 0.500 g Ce/BTO support and 0.0315 g Ru₃(CO)₁₂ added in 10 mL of tetrahydrofuran (THF) solution and stirred at 25 °C for 5 h. The rotary evaporator was used to remove THF solvent. Then, the obtained powder was heated at 250 °C for 3 h in the flow of Ar (99.999%, 5 mL min⁻¹) to decompose Ru₃(CO)₁₂. The Cs-promoted catalysts also were prepared according to the previously reported. Based on the molar ratio of Cs to Ru (2, 3 and 4), the produced catalysts were named as 2Cs-Ru/2Ce/BTO, 3Cs-Ru/2Ce/BTO and 4Cs-Ru/2Ce/BTO.

1.2 Catalyst characterizations

XRD profiles of samples performed on a PANalytical X'Pert Pro diffractmeter with a Cu-*Ka* radiation. Electron paramagnetic resonance (EPR) spectrometer (Bruker, EMXnano) was used to detect oxygen vacancies operated at X-band at 25 °C. X-ray photoelectron spectra (XPS) were performed on an ESCALAB 250Xi (Thermo Fisher Scientific Inc., USA). The content of Ru and Ce in the catalysts was detected by ICP-AES (IRIS Intrepid II XSP, Thermo Fisher Scientific Inc., USA). Nitrogen adsorption-desorption isotherm evaluated the surface area of the prepared sample on BELSORPmini II (BEL, Japan) at -196 °C. Scanning electron microscopy (SEM, Zeiss Sigma) was used to observe the morphology of Ce/BTO samples. Transmission electron microscope (TEM, JEM-2100, JEOL, Japan) was used to recorded the microstructures of Ru/2Ce/BTO.

The Altamira AMI-300 instrument with a thermal conductivity detector was used for Temperature-programmed reduction (H₂-TPR) experiments. Before the test, the samples (0.100 g) were pretreated under the flow of Ar (30 mL min⁻¹) at 400 °C for 1 h. After cooling down to 25 °C in Ar (30 mL min⁻¹), the temperature was raised up to 800 °C at 10 °C min⁻¹ in 30 mL min⁻¹ of 10 vol% H₂/Ar and kept 30 min.

The kinetic measurements of Ru/2Ce/BTO catalyst was conducted based on method developed previously.² 0.100 g catalyst was loaded in a quartz tubular reactor (I.D. = 7 mm) in a flow rate of 60 mL min⁻¹, and Ar gas was used as a diluent. The Ru/2Ce/BTO was reduced at 400 °C or 500 °C for 3 h at 0.1 MPa before the tests. The constituent gases of the reactant (N₂, H₂, Ar) were as follows in mL min⁻¹: (5, 45, 10), (8, 45,7), (10, 45, 5), (12, 45, 3) and (15, 45, 0) for N₂ order, (15, 5, 40), (15, 15, 30), (15, 25, 20), (15, 35, 10) and (15, 45, 0) for H₂ order.

In situ DRIFTS of adsorbed N_2 were collected on a Nicolet IS50 FTIR spectrometer in the range of 650-4000 cm⁻¹. Prior to tests, catalysts were pretreated at 400 °C or 500 °C for 3 h in 45

mL min⁻¹ of H_2 and then purged at the same temperature for 60 min with He flow (15 mL min⁻¹). The samples were cooled to 25 °C to obtain a background spectrum. The samples were exposed to 15 mL min⁻¹ of N_2 and the FTIR spectra for N_2 adsorbed on the catalyst were recorded.

1.3 Activity measurements

Ammonia synthesis was measured in a fixed bed plug flow system. Prior to measurement, the catalysts (0.100 g, 220 – 450 μ m) were pretreated in synthesis gas (H₂/N₂ = 3/1, 60 mL min⁻¹) at 400 °C for 3 h to reduce Ru cations to metallic state and decompose CsNO₃. The reaction temperature was from 300 to 400 °C at 0.1 MPa. The produced ammonia was trapped by a dilute sulfuric acid solution (1 mmol L⁻¹ H₂SO₄) solution. The rate of ammonia formation was calculated based on the rate of decrease in the conductivity of the H₂SO₄ solution. It was necessary to stabilize for 20 minutes under each reaction condition before the measurement.

catalysts	BTO	1Ce/BTO	2Ce/BTO	3Ce/BTO	4Ce/BTO
$S_{BET} (m^2 g^{-1})$	10.8	29.3	35.6	39.3	42.6

Table S1. The BET specific surface area (S_{BET}) of Ce doped BTO.

Table S2. The content of Ce and Ru in support by ICP-AES

catalysts	Ru/BTO	Ru/1Ce/BTO	Ru/2Ce/BTO	Ru/3Ce/BTO	Ru/4Ce/BTO
Ru (wt%)	1.96	2.35	2.62	2.42	2.48
Ce (wt%)	-	2.06	3.57	4.51	6.59

Table S3. Comparison of ammonia synthesis activity over Ru catalyst on BTO, 2Ce/BTO and BCO supports

antolyata	NH ₀ syn	$^{-1}$ cat h^{-1})	Ea (kJ		
catalysis	325 °C	350 °C	375 °C	400 °C	mol ⁻¹)
Ru/BTO	370	529	806	1508	62
Ru/2Ce/BT O	554	954	1775	3251	79
Ru/BCO	356	832	1426	2235	81

						Area				
	2Ce/BTO	Ru/2Ce/BTO (fresh)	Ru/2Ce/BTO (400 °C)	Ru/2Ce/BTO (450 °C)	Ru/2Ce/BTO (500 °C)	Ru/2Ce/BTO (550 °C)	Ru/2Ce/BTO (600 °C)	Ru/2Ce/BTO (650 °C)	Ru/2Ce/BTO (700 °C)	Ru/2Ce/BTO (750 °C)
916.0	10824.63	5890.769	5945.58	11290.82	5906.766	8458.456	5926.049	3612.979	8400.356	3431.513
901.0	52086.45	39860.72	45591.45	46199.76	45326.22	70310.52	58485.13	33512.32	49927.68	50331.42
898.0	74770.48	53213.7	61122.31	67288.34	66460.69	99709.66	84759.61	46764.07	10925.13	66032.91
888.6	46076.01	33726.63	42918.14	46957.82	46725.7	69784.41	59856.4	31679.33	66753.66	46857.21
882.2	30244.32	21009.5	18185.57	24874.31	18674.07	30934.72	27503.54	13063.29	21555.98	22901.82
Total area of Ce ⁴⁺	21401.89	153701.31 9	173763.05	196611.05	183093.446	279197.766	236530.72 9	128631.989	157562.806	189554.873
903.7	19403.71	9441.6	18720.34	28860.14	25762.21	39313.06	35880.63	18805.39	36086.55	38282.69
899.3	0.22	6088.649	6507.059	5608.325	7491.358	7193.872	13123.72	7726.825	9641.424	22080.42
885.6	10824.63	38767.3	43724.29	41041.5	43076.55	65302.49	61472.91	36253.2	51236.51	68669.29
880.6	3295.437	3677.36	1574.772	4521	5577.44	8221.598	8150.503	3298.341	6165.702	10428.08

Table S4. XPS spectra results of Ce 3d on 2Ce/BTO and Ru/2Ce/BTO catalysts at various activated temperature.

6

Total area	33523.997	57974.909	70526.461	80030.965	81907.558	120031.02	118627.76	66083.756	103130.186	139460.48
of Ce ³⁺							3			
Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)	13.5 %	27.4 %	28.9 %	28.9 %	30.9 %	30.1 %	33.4 %	33.9 %	39.6 %	42.4 %

Catalysta	Ru loading	T (°C)	NH ₃ synthesis rat	- Dof		
	(wt%)	1(0)	$(\mu mol g^{-1}_{cat} h^{-1})$	$(\text{mmol } g^{-1}{}_{Ru} h^{-1})$	KUI.	
3Cs-Ru/2Ce/BTO	2.62	350	4390	167.6	This work	
8Cs-Ru/Sr ₂ Nb ₂ O ₇	2.0	350	1060	53.0	3	
Ru/C12A7:e-	1.2	400	2757	229.8	4	
Ru/Pr ₂ O ₃	5	400	3600	72	5	
Ru/BaO-CaH ₂	10	340	10500	105.0	6	
Ru/CaH ₂	10	340	7400	74.0	6	
Ru/Ca ₂ N:e ⁻	1.8	340	3386	188.1	7	
Ru/CaNH	1.8	340	308	17.1	7	
Ru–Cs/MgO	2.0	340	3200	160.0	7	
LaRuSi	-	340	3020	-	8	

Table S5. Comparison of ammonia synthesis activity over various Ru catalysts at 0.1 MPa

Fig. S1 The SEM images of BTO and Ce/BTO: (a) BTO, (b) 1Ce/BTO, (c) 2Ce/BTO, (d) 3Ce/BTO, (e) 4Ce/BTO.

Fig. S2 The SEM-mapping images of BTO and Ce/BTO: (a) BTO, (b) 2Ce/BTO and (c) 4Ce/BTO

Fig S3. The ammonia synthesis over Ru/2Ce/BTO at 400 °C with different activated temperature.

Fig. S4. The XRD profiles of used Ru/2Ce/BTO activated at different temperatures: (1) as-prepared (fresh), (2) 400 °C, (3) 450 °C, (4) 500 °C, (5) 550 °C, (6) 600 °C, (7) 650 °C, (8) 700 °C, (9) 750 °C.

Fig. S5 (a) TEM images and (b) size distribution of Ru particles on Ru/2Ce/BTO catalyst after reaction at different temperature; (1) 400 °C, (2) 450 °C, (3) 500 °C, (4) 550 °C, (5) 600 °C, (6) 650 °C, (7) 700 °C, and (8) 750 °C.

Fig. S6 The H₂-TPR profiles of BTO, 2Ce/BTO, Ru/BTO and Ru/2Ce/BTO.

Fig. S7 EPR spectra of Ru/2Ce/BTO catalyst after reaction at different temperature; (1) 400 °C, (2) 450 °C, (3) 500 °C, (4) 550 °C, (5) 600 °C, (6) 650 °C, (7) 700 °C, (8) 750 °C.

Fig. S8 (a) Effect of the partial pressures of N_2 and H_2 on NH_3 synthesis rate on Ru/2Ce/BTO activated at 400 °C or 500 °C. Reaction conditions: catalyst 0.100 g; pressure 0.1 MPa; temperature 400 °C. (b) In situ FTIR spectra of adsorbed N_2 at 25 °C on different catalysts: (1) Ce/BTO (2) Ru/2Ce/BTO activated at 400 °C, and (3) Ru/2Ce/BTO activated at 500 °C.

Fig. S9 The time dependence of catalytic rates of Ru/2Ce/BTO catalyst. Reaction conditions: catalyst, 0.100 g, synthesis gas, $H_2/N_2=3$ 60 mL min⁻¹, at 400 °C and 0.1 MPa.

Reference

1 D. B. Xu, W. D. Shi, C. Xu, S. B. Yang, H. Y. Bai, C. J. Song and B. Y. Chen, *J. Mater. Res.*, 2016, **31**, 2640–2648.

- 2 J. Huang, M. W. Yuan, X. Z. Li, Y. Wang, M. W. Li, J. J. Li, Z. X. You, J. Catal., 2020, **389**, 556–565.
- 3 M. X. Chen, M. W. Yuan, J. J. Li, Z. X. You, Appl. Catal. A., 2018, 554, 1-9.
- 4 M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, H. Hosono, *Nat. Chem.*, 2012, **4**, 934–940.
- 5 K. Sato, K. Imamura, Y. Kawano, S. Miyahara, T. Yamamoto, S. Matsumurac, K. Nagaoka, *Chem. Sci.*, 2017, **8**, 674–679.
- 6 M. Hattori, T. Mori, T. Arai, Y. Inoue, M. Sasase, T. Tada, M. Kitano, T. Yokoyama, M. Hara, ACS Catal., 2018, 8, 10977–10984.
- 7 M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama,
 M. Hara, H. Hosono, *Chem. Sci.*, 2016, 7, 4036–4043.

8 J. Li, J. Z. Wu, H. Y. Wang, Y. F. Lu, T. N. Ye, M. Sasase, X. J. Wu, M. Kitano, T. Inoshita,

H. Hosono, Chem. Sci., 2019, 10, 5712-5718