Supporting Information

Constructing green mercury-free catalysts with single pyridinic N

species for acetylene hydrochlorination and mechanism investigation

Xianliang Qiao, Xinyu Liu, Zhiqiang Zhou, Qingxin Guan,* and Wei Li*

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of

Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin

300071, P. R. China

*Corresponding Authors: Tel: +86-22-23508662, Fax: +86-22-23508662,

E-mail: qingxinguan@nankai.edu.cn. (Q. Guan); weili@nankai.edu.cn. (W. Li)

Fig. S1 Reaction energy diagram of the substances involved in the reaction path 2.

Fig. S2 XRD patterns of PoPD and PoPD-derived carbon materials.

Fig. S3 SEM images of PoPD-derived carbon materials.

Fig. S4 Conversion of acetylene over 6 wt% Hg/C, PoPD-C-800, and 0.25 wt% Au/AC catalysts under 200 h^{-1} and 150 °C.

Sample	С	Ν	Ο	S	С	Ν	Н
	(wt %) ^a	(wt %) ^a	(wt %) ^a	(wt %) ^a	(wt %) ^b	(wt %) ^b	(wt %) ^b
PoPD-30	72.53	18.68	8.27	0.52	69.17	18.78	3.88
PoPD-50	73.03	19.06	7.61	0.30	72.46	19.66	3.53
PoPD-70	73.11	19.57	7.00	0.32	72.98	20.34	3.15
PoPD-70-300	74.10	19.32	6.33	0.25	73.43	19.45	3.07

Table S1 Compositions of C, N, and O (wt %) in samples determined by XPS^a and EA^b methods.

Sample	$S_{BET} (m^2 g^{-1})$	$V_{tot} (cm^3 g^{-1})$	D (nm)
PoPD-C-400	12	0.026	9.5
PoPD-C-600	17	0.032	7.8
PoPD-C-800	93	0.083	3.6
PoPD-C-1000	240	0.147	2.5

Table S2 Textural properties of PoPD-derived carbon materials.

 $\overline{S_{BET}}$: Specific surface area; V_{tot}: Total pore volume; D: Average pore diameter.

Catalyst	Temperature (°C)	GHSV (h ⁻¹)	Conversion (%)	Reference
SiC@NC	200	30	80	S1
PDA/SiC-600	200	30	77	S2
ZIF-8/SAC	180	30	73	S 3
Z_4M_1	180	50	60	S4
N,S-C-2.5	180	50	82	S 5
N-CNTs	180	180	3.8	S 6
N-MC-G	220	30	85.5	S 7
PSAC-N0.8	250	120	68	S8
C ₃ N ₄ /AC	180	50	77	S9
N,P-C600	210	50	98.7	S10
N,S-C-NH ₃	220	35	80	S11
C-NH ₃ (ZIF-8)	220	30	92	S12
AC-n-U500	240	30	92	S13
B,N-graphene	150	36	95	S14
NC1-1073	300	320	81	S15
3NR/4CAC	220	30	97.9	S16
PANI-AC	180	36	76	S17
N-OMC-O2.0	180	50	35	S18
N-MWCNTs	200	116	16.5	S19
ND@G	220	300	50	S20
C-1000	220	36	95	S21
D-AC-M	220	30	63	S22
MF-700	220	30	97	S23
p-BN	280	40	90	S24
PoPD-70-300	280	120	70	This work
PoPD-C-800	220	50	98.5	This work
PoPD-C-800	220	200	90.1	This work

Table S3 The comparisons of catalytic performance between PoPD-derived materials and other reported metal-free catalysts.

Sample	C (wt %)	N (wt %)	O (wt %)
PoPD-C-400	72.06	13.18	14.76
PoPD-C-600	77.16	10.32	12.52
PoPD-C-800	79.11	8.53	12.36
PoPD-C-1000	81.93	5.91	12.16

Table S4 Compositions of C, N, and O (wt %) in PoPD-derived carbon materials determined by XPS.

Table S5 N species contents with binding energies in PoPD-derived carbon materials determined by XPS analysis.

Sample	N species contents with binding energies (at.%)					
	Pyridinic N	Pyrrolic N	Graphitic N	Pyridinic N-oxide		
PoPD-C-400	45.56 (398.35 eV)	33.49 (399.68 eV)	18.69 (400.82 eV)	2.26 (402.64 eV)		
PoPD-C-600	40.15 (398.37 eV)	22.80 (399.70 eV)	32.07 (400.70 eV)	4.98 (402.68 eV)		
PoPD-C-800	38.27 (398.37 eV)	8.99(399.73 eV)	45.33 (400.93 eV)	7.41 (402.69 eV)		
PoPD-C-1000	23.51 (398.32 eV)	6.55 (399.74 eV)	60.52 (400.98 eV)	9.42 (402.72 eV)		

References

- S1 X. Li, X. Pan, L. Yu, P. Ren, X. Wu, L. Sun, F. Jiao, X. Bao, Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene, *Nat Commun.*, 2014, 5, 3688.
- S2 X. Li, P. Li, X. Pan, H. Ma, X. Bao, Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination, *Appl. Catal. B: Environ.*, 2017, 210, 116–120.
- S3 X. Li, J. Zhang, Y. Han, M. Zhu, S. Shang, W. Li, MOF-derived various morphologies of N-doped carbon composites for acetylene hydrochlorination, *J. Mater. Sci.*, 2018, 53, 4913–4926.
- S4 X. Li, J. Zhang, W. Li, MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination, *J. Ind. Eng. Chem.*, 2016, *44*, 146–154.
- S5 J. Wang, F. Zhao, C. Zhang, L. Kang, M. Zhu, A novel S, N dual doped carbon catalyst for acetylene hydrochlorination, *Appl. Catal. A-Gen.*, 2018, 549, 68–75.
- S6 K. Zhou, B. Li, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-C. Jia, M.-Q. Zhao, G.-H. Luo, D. S. Su, F. Wei, The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes, *ChemSusChem*, 2014, 7, 723–728.
- S7 G. Lan, Y. Wang, Y. Qiu, X. Wang, J. Liang, W. Han, H. Tang, H. Liu, J. Liu, Y. Li, Wheat flour-derived N-doped mesoporous carbon extrudate as superior metal-free catalysts for acetylene hydrochlorination, *Chem. Commun.*, 2018, 54, 623–626.
- S8 X. Wang, B. Dai, Y. Wang, F. Yu, Nitrogen doped pitch based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, *ChemCatChem*, 2014, *6*, 2339–2344.
- S9 X. Li, Y. Wang, L. Kang, M. Zhu, B. Dai, A novel, non-metallic graphitic carbon nitride

catalyst for acetylene hydrochlorination, J. Catal., 2014, 311, 288-294.

- S10 J. Zhao, B. Wang, Y. Yue, G. Sheng, H. Lai, S. Wang, L. Yu, Q. Zhang, F. Feng, Z.-T. Hu, X. Li, Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination, *J. Catal.*, 2019, 373, 240–249.
- S11 X. Dong, S. Chao, F. Wan, Q. Guan, G. Wang, W. Li, Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination, *J. Catal.*, 2018, 359, 161–170.
- S12 S. Chao, F. Zou, F. Wan, X. Dong, Y. Wang, Y. Wang, Q. Guan, G. Wang, W. Li, Nitrogendoped carbon derived from ZIF-8 as a high-performance metal-free catalyst for acetylene hydrochlorination, *Sci. Rep.*, 2017, 7, 39789.
- S13 T. Zhang, J. Zhao, J. Xu, J. Xu, X. Di, X. Li, Oxygen and nitrogen-doped metal-free carbon catalysts for hydrochlorination of acetylene, *Chin. J. Chem. Eng.*, 2016, *24*, 484–490.
- S14 B. Dai, K. Chen, Y. Wang, L. Kang, M. Zhu, Boron and nitrogen doping in graphene for the catalysis of acetylene hydrochlorination, *ACS Catal.*, 2015, *5*, 2541–2547.
- S15 R. Lin, S. K. Kaiser, R. Hauert, J. Pérez-Ramírez, Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination, ACS Catal., 2018, 8, 1114– 1121.
- S16 S. Mei, J. Gu, T. Ma, X. Li, Y. Hu, W. Li, J. Zhang, Y. Han, N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination, *Chem. Eng. J.*, 2019, 371, 118–129.
- S17 C. Zhang, Li. Kang, M. Zhu, B. Dai, Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination, *RSC Adv.*, 2015, *5*, 7461–7468.

- S18 Y. Yang, G. Lan, X. Wang, Y. Li, Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination, *Chinese J. Catal.*, 2016, *37*, 1242–1248.
- S19 X. Li, X. Pan, X. Bao, Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride, *J. Energy Chem.*, 2014, *23*, 131–135.
- S20 G. Lan, Y. Qiu, J. Fan, X. Wang, H. Tang, W. Han, H. Liu, H. Liu, S. Song, Y. Li, Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination, *Chem. Commun.*, 2019, 55, 1430–1433.
- S21 J. Wang, W. Gong, M. Zhu, B. Dai, Effect of carbon defects on the nitrogen-doped carbon catalytic performance for acetylene hydrochlorination, *Appl. Catal. A-Gen.*, 2018, 564, 72–78.
- S22 Y. Qiu, S. Ali, G. Lan, H. Tong, J. Fan, H. Liu, B. Li, W. Han, H. Tang, H. Liu, Y. Li, Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination, *Carbon*, 2019, *146*, 406–412.
- S23 X. Qiao, Z. Zhou, X. Liu, C. Zhao, Q. Guan, W. Li, Constructing a fragmentary g-C₃N₄ framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination, *Catal. Sci. Technol.*, 2019, *9*, 3753–3762.
- S24 P. Li, H. Li, X. Pan, K. Tie, T. Cui, M. Ding, X. Bao, Catalytically active boron nitride in acetylene hydrochlorination, *ACS Catal.*, 2017, *7*, 8572–8577.