Electronic Supplementary Information

Identification of Hydrogen Species on Pt/Al₂O₃ by *in situ* Inelastic Neutron Scattering and their Reactivity

with Ethylene

Seiji Yamazoe,^{a,b} Akira Yamamoto,^{a,c} Saburo Hosokawa,^{a,d} Ryoichi Fukuda,^a Kenji Hara,^e Mitsutaka Nakamura,^f Kazuya Kamazawa,^g Tatsuya Tsukuda,^{a,h} Hisao Yoshida,^{*,a,c} Tsunehiro Tanaka^{*,a,d}

^a Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

^b Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1, Minamiosawa, Hachioji, Tokyo 192-0397, Japan

^c Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

^d Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

^e Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 060-0810, Japan

^f Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

^g CROSS Neutron Science and Technology Center, Tokai, Ibaraki 319-1106, Japan

^h Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan

Corresponding author:

E-mail for H.Y.: yoshida.hisao.2a@kyoto-u.ac.jp

E-mail for T.T.: tanakat@moleng.kyoto-u.ac.jp

Figure S1. XRD patterns of $5wt\% Pt/Al_2O_3$ and the bare Al_2O_3 .

Figure S2. Pt L₃-edge (a) XANES and (b) FT-EXAFS spectra of $5wt\% Pt/Al_2O_3$ and Pt foil.

Figure S3. Inelastic neutron scattering spectra of (a) Al_2O_3 support with 5%H₂ (He balance), (b) the 5wt% Pt/Al₂O₃ sample with He.

Scheme S1. Formation mechanism of surface species on Pt/Al_2O_3 in the presence of C_2H_2 .

Sample	Neighbor atom	CN^{a}	<i>r</i> (Å) ^b	DW^{c}	R factor ^d
5wt% Pt/Al ₂ O ₃	Pt	5.7±0.3	2.66±0.03	0.009 ± 0.004	5.9
Pt foil	Pt	12.4±0.3	2.76±0.01	0.005 ± 0.001	12.2

Table S1. Curve fitting results of Pt L₃-edge FT-EXAFS of 5wt%Pt/Al₂O₃ and Pt foil

^a Coordination number, ^b bond length, ^c Debye-Waller factor, ^d $R = (\Sigma(k^3\chi^{\text{data}}(k)-k^3\chi^{\text{fit}}(k))^2)^{1/2}/(\Sigma(k^3\chi^{\text{data}}(k))^2)^{1/2}$

Atom	х	У	Z
Al	8.794862	4.241624	0.457553
Al	0.803466	4.259209	0.463587
Al	8.017248	1.416540	1.416145
Al	0.025867	1.445739	1.438879
Al	5.852140	4.242486	1.461283
Al	13.843613	4.248283	1.469647
Al	2.949676	-0.059102	1.510967
Al	10.941139	-0.053315	1.519321
Al	2.942069	2.886581	1.501568
Al	10.933552	2.892348	1.509932
Al	12.980235	1.415198	2.763096
Al	4.986366	1.415495	2.794609
Al	12.066311	4.244612	4.228139
Al	15.046874	2.870779	4.233356
Al	15.075348	-0.022947	4.209462
Al	9.978559	1.445443	4.305356
Al	7.048763	2.849517	4.233753
Al	7.064850	-0.021993	4.229441
Al	4.099180	4.221144	4.257870
Al	1.990483	1.428155	4.306937
Al	1.058176	4.242627	5.602389
Al	9.046951	4.247239	5.620337
Al	5.034776	1.413224	5.799601
Al	13.057875	1.368416	5.741917
Al	11.160769	0.012075	7.213876
Al	11.080856	2.852386	7.216247
Al	0.143442	1.398466	6.957767
Al	3.032246	0.000017	7.161427
Al	3.017783	2.836579	7.156613
Al	7.950618	1.385885	7.186768
Al	5.925584	4.250208	7.201001
Al	14.283757	4.462544	7.333825

Table S2. Atomic coordinates of ten H adsorbed Pt_{14} (Al₂O₃)₁₆

Ο	7.021710	1.433982	0.033877
О	15.013184	1.439779	0.042242
0	7.057964	4.248815	0.200364
0	15.049438	4.254582	0.208698
0	2.615760	4.238931	0.341588
0	10.607234	4.244718	0.349963
0	2.824696	1.419565	0.398233
0	10.816160	1.425362	0.406598
0	9.030610	2.821299	1.531398
0	1.039156	2.815512	1.523023
0	9.050538	0.010988	1.522086
0	1.059075	0.005201	1.513742
0	12.851236	0.066302	1.660547
0	4.859783	0.060495	1.652193
0	12.834870	2.787367	1.672222
О	4.843407	2.781590	1.663868
0	3.053996	4.226423	2.889659
0	11.013857	4.231956	2.871520
0	3.103270	1.408157	2.956452
0	11.087255	1.413633	2.954507
0	6.991066	1.412820	3.036923
0	14.930639	1.421521	3.015003
О	14.741227	4.238446	3.090231
Ο	6.823809	4.232616	3.104863
Ο	5.114048	2.695535	4.391347
О	0.881409	2.816650	4.465731
О	0.901922	0.035345	4.469768
Ο	5.126855	0.117861	4.384882
0	13.072280	0.132402	4.385138
Ο	13.065681	2.747902	4.492118
Ο	8.902339	2.813289	4.551076
0	8.929113	0.054066	4.567804
Ο	10.970785	4.231010	5.858370
0	14.894405	1.426165	5.664877

	•		
Ο	15.075861	4.265022	5.689075
О	11.116453	1.454255	5.912923
О	2.974550	4.226429	5.793754
О	7.119869	4.243755	5.756736
О	3.097763	1.423358	5.860305
0	6.931654	1.417242	5.723922
О	1.131833	2.877988	6.945004
О	1.177840	-0.041303	6.926362
О	4.883564	0.021644	7.034560
О	4.884136	2.819815	7.042353
О	9.137031	2.882546	7.208361
О	9.200869	-0.034625	7.234885
0	12.978909	0.059434	7.114991
О	13.045514	2.869291	7.322123
Pt	2.542321	1.419220	9.356824
Pt	2.581379	4.244657	9.282067
Pt	7.080362	4.345270	9.337439
Pt	7.045588	1.409187	9.379187
Pt	0.099193	2.842546	9.024771
Pt	-0.042795	-0.089808	9.010919
Pt	4.816885	2.838269	9.881182
Pt	4.799452	0.036057	9.991909
Pt	2.248502	2.751255	12.018150
Pt	2.302415	0.051515	11.965730
Pt	-0.066453	4.194831	11.372870
Pt	0.110130	1.376834	11.259900
Pt	4.571745	4.244351	12.397050
Pt	4.602008	1.436264	12.448200
Н	8.754501	3.324327	8.048816
Н	8.779993	-0.433640	8.100286
Н	1.658859	4.212948	11.159230
Н	11.090408	1.472330	8.324542
Н	13.350217	2.324943	8.089771
Н	11.052073	4.243095	8.310661

Н	3.359426	0.600979	13.265540
Н	4.643363	2.880373	13.507310
Н	8.015328	2.828901	9.581295
Н	5.465651	2.808311	11.513650

H atom	Charge / e
AlO-H(1)	1.00
AlO-H(2)	1.00
AlO-H(3)	1.00
Al-H-Al (4)	-0.95
Al-H-Al (5)	-0.97
terrace Pt–H–Pt (6)	-0.04
edge Pt–H–Pt (7)	-0.08
perimeter Pt–H–Pt (8)	-0.15
$Pt_3-H_{fcc}(9)$	-0.06
Pt_3-H_{hcp} (10)	-0.07

 Table S3. Calculated atomic charges on H atoms.

#Mode ^a Description		Hatoms ^b	Frequency
#WIOUC	Description	11 atoms	/ meV
1	AlO–H stretching	AlO–H (1)	433.7
2	AlO–H stretching	AlO–H (3)	345.6
3	AlO–H stretching	AlO–H (2)	305.8
4	Pt–H stretching	edge Pt–H–Pt (7)	175.9
5	Al–H stretching	Al–H–Al (4, 5)	174.4
6	Pt–H stretching	terrace Pt–H–Pt (6)	170.2
7	Pt–H stretching	perimeter Pt–H–Pt (8)	166.0
8	Al–H stretching	Al–H–Al (4, 5)	163.9
9	Al–H stretching	Al–H–Al (4, 5)	159.9
10	AlO–H bending	AlO–H (2, 3)	144.3
11	Pt–H stretching	$Pt_3-H_{hcp}(10)$	136.5
12	Pt–H stretching	Pt_3-H_{fcc} (9)	133.1
13	Pt–H stretching	perimeter Pt–H–Pt (8), Pt ₃ –H _{fcc} (9)	131.8
14	Pt–H stretching	perimeter Pt–H–Pt (8), Pt ₃ –H _{fcc} (9)	130.9
15	Al–H stretching	Al-H-Al (4, 5)	130.0
16	AlO–H bending	AlO–H (2, 3)	125.9
17	Pt–H stretching	Pt_3-H_{hcp} (10)	121.2
18	AlO–H bending+Al–H bending	AlO-H (1), Al-H-Al (4, 5)	121.0
19	AlO–H bending+Al–H bending	AlO-H (1), Al-H-Al (4, 5)	115.6
20	AlO–H bending+Al–H bending	AlO-H (1), Al-H-Al (4, 5)	109.4
21	Pt–H stretching	edge Pt-H-Pt (7), Pt ₃ -H _{fcc} (9)	107.1
22	Pt–H stretching	Pt_3-H_{hcp} (10)	105.3
23	Pt–H stretching	edge Pt–H–Pt (7), Pt_3 –H _{fcc} (9)	105.2
24	AlO–H bending	AlO–H (2, 3)	102.8
27	AlO–H bending	AlO–H (2, 3)	94.4
33	AlO–H bending	AlO–H (1)	83.5
36	Pt–H bending	perimeter Pt–H–Pt (8)	79.6
49	Pt–H bending	Pt_3-H_{fcc} (9)	69.0
67	Pt–H bending	edge, terrace Pt–H–Pt (6, 7)	56.4
68	Pt–H bending	edge, terrace Pt-H-Pt (6, 7)	56.1
74	Pt–H bending	edge, terrace Pt–H–Pt (6, 7)	53.0

Table S4. Calculated frequencies and description of vibrational modes that dominantly come from the motion of H atoms.

^aNumbering of normal modes in descending order of frequency. ^bH atoms relevant to the vibrational mode.