Electronic Supplementary Information

Highly selective demethylation of anisole to phenol over H₄Nb₂O₇ modified MoS₂ catalyst

Na Ji,*a Zhenjiao Wang, a Xinyong Diao, a Zhichao Jia, a Tingting Li, a Yujun Zhao b Qingling Liu, a Xuebin Lu,^{a,c} Degang Ma, a and Chunfeng Song a

^a School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, China.

^{b.}School of Chemical Engineering, Tianjin University, Tianjin, 300350, China.

^{c.}Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, China.

* Corresponding author E-mail: jina@tju.edu.cn

Table of Contents

SECTION S1 SUPPLYMENTARY FIGURES	S2
SECTION S2 SUPPLYMENTARY TABLES	S7
SECTION S3 SYNTHESIS OF THE CATALYSTS	S11
SECTION S4 REFERENCES	S12

SECTION S1 SUPPLYMENTARY FIGURES

Figure S1. XRD spectra of the samples prepared under different temperatures.

Figure S2. XRD spectra of the samples prepared under different hydrothermal time.

Figure S3. XRD spectra of the samples prepared under different Mo/Nb molar ratio.

Figure S4. XPS spectrum of Nb 3d of the MoS₂-H₄Nb₂O₇-160 catalyst.

Figure S5. XPS spectra of (a) Mo 3d and (b) S 2p of MoS_2 -H₄Nb₂O₇ catalysts.

Figure S6. Effect of the reaction temperature in the conversion of anisole in the presence of MoS_{2} -

H₄Nb₂O₇-160 catalyst (initial H₂ pressure was 3 MPa, reaction time was 4 h).

Figure S7. Effect of the initial H₂ pressure in the conversion of anisole in the presence of MoS_{2} -H₄Nb₂O₇-160 catalyst (reaction temperature was 270 °C, reaction time was 4h).

Figure S8. Effect of the reaction time in the conversion of anisole in the presence of $MoS_2-H_4Nb_2O_7$ -

160 catalyst (reaction temperature was 270 $^\circ\text{C},$ initial H_2 pressure was 3 MPa).

SECTION S2 SUPPLYMENTARY TABLES

	Reaction conditions			Res	ults	
Catalyst -	Т	Р	t/TOS⁵	Conv.	Sel.	Ref.
	(°C)	(MPa)	(h)	(%)	(%)	
Fe/SiO ₂	400	0.1	15 ^b	17.12	56	1
Fe/Ni/HY	350	4	1	94.02	37.56	2
Pd/NbOPO ₄	300	0.1	22 ^b	6.1	36.6	3
Pt/HBeta	400	0.1	0.5 ^b	96	33	4
Pd@MIL-101	240	1	8	19	45.1	5
PtZn/C	325	2.75	1 ^b	30	66	6
Ni/SBA-15	220	5	2	99.8	53.5	7
RuNi/Al-SBA-15	400	0.1	24 ^b	10	99	8
Ni/Al ₂ O ₃ -SiO ₂	400	0.1	0.5 ^b	75.5	37.1	9
Mo/CNTs	450	0.8	3 ^b	75	90	10
CoMoS/Al ₂ O ₃	300	0.8	6 ^b	40	70	11
Pt/Ni/Al-SBA-15	420	0.1	6	40	90	12
Mo@Pt/SiO ₂ -Al ₂ O ₃	450	0.1	1 ^b	87	65	13
Re-MoO _x /TiO ₂	300	5	4	10	65	14
HY	240	0.5ª	3	96.6	32.8	15
MoS_2 - $H_4Nb_2O_7$	270	3	4	97.7	98.0	this work

Table S1. Demethylation of anisole to phenol results over different catalysts

 $a N_2$ was pumped in to provide initial pressure

Catalyst	Slab Length (nm)	Stacking Number	f _e	f _c	f_c/f_e
MoS ₂	3.1	5.6	0.28	0.085	0.30
MoS ₂ -H ₄ Nb ₂ O ₇ -160	2.4	4.6	0.32	0.141	0.44

Table S2. The morphology parameters of MoS_2 in different catalyst

Table S3. Products distribution over MoS_2 and MoS_2-H_4Nb_2O_7-160 catalysts at 300 $^\circ\text{C}$

Catalyst	Conversion $(9/)$		Yield (%)
Catalyst	Conversion (%)	Phenol	Benzene	Cyclohexane
MoS ₂	99.7	88.2	10.4	2.1
MoS ₂ -H ₄ Nb ₂ O ₇ -160	98.8	95.6	2.6	0.6

^a Reaction conditions: 300 °C, 3 MPa, 3 h.

Table S4. Catalytic activity of MoS₂-H₄Nb₂O₇ prepared under different temperatures

Catalyst Con	Conversion (%)	Yield (%)		
		Phenol	Benzene	Cyclohexane
MoS_2 - $H_4Nb_2O_7$ -120	58.5	55.9	2.2	0.4
MoS_2 - $H_4Nb_2O_7$ -140	84.4	74.5	3.9	1.1
MoS_2 - $H_4Nb_2O_7$ -160	97.7	95.7	0.8	0.6
MoS_2 - $H_4Nb_2O_7$ -180	94.9	88.9	5.4	0.6
MoS_2 - $H_4Nb_2O_7$ -200	80.9	76.8	1.8	2.2

Reaction conditions: 270 °C, 3 MPa, 4 h.

Catalyst Conversion	Conversion (%)	Yield (%)		
		Phenol	Benzene	Cyclohexane
MoS ₂ -120	56.5	52.5	2.3	0.3
MoS ₂ -140	65.2	61.4	2.2	0.8
MoS ₂ -160	68.9	67.8	0.7	0.4
MoS ₂ -180	95.5	82.7	2.3	1.3
MoS ₂ -200	95.7	83.3	6.7	1.4

Table S5. Catalytic activity of MoS₂ prepared under different temperatures

Reaction conditions: 270 °C, 3 MPa, 4 h.

Table S6. Catalytic activity of MoS_2 -H₄Nb₂O₇ prepared under different time

Catalvst	Conversion (%)	Yield (%)		
		Phenol	Benzene	Cyclohexane
MoS ₂ -H ₄ Nb ₂ O ₇ -6h	87.0	67.3	3.2	1.3
MoS_2 - $H_4Nb_2O_7$ -12h	97.7	95.7	0.8	0.6
MoS_2 - $H_4Nb_2O_7$ -24h	97.3	90.8	3.8	1.1
MoS_2 - $H_4Nb_2O_7$ -48h	100.0	90.3	2.5	0.0

Reaction conditions: 270 °C, 3 MPa, 4 h.

Catalyst	Conversion (%)	Yield (%)		
Calaryot		Phenol	Benzene	Cyclohexane
MoS_2 - $H_4Nb_2O_7$ -25	76.9	72.3	3.0	1.7
MoS_2 - $H_4Nb_2O_7$ -14	89.4	86.0	1.1	2.3
MoS_2 - $H_4Nb_2O_7$ -9	96.5	93.6	1.9	1.1
MoS_2 - $H_4Nb_2O_7$ -7	97.7	95.7	0.8	0.6
MoS_2 - $H_4Nb_2O_7$ -5	75.9	72.5	1.1	2.2
MoS_2 - $H_4Nb_2O_7$ -4	62.0	60.2	0.9	0.9

Table S7. Catalytic activity of MoS₂-H₄Nb₂O₇ prepared at different Mo/Nb molar ratio.

Reaction conditions: 270 °C, 3 MPa, 4 h.

Entry	Run	Conversion (%)	Yield (%)		
Lindiy	Run		Phenol	Benzene	Cyclohexane
1	1 st	98.7	94.7	3.7	0.2
2	2 nd	92.2	90.5	1.4	0.2
3	3 rd	88.9	85.9	1.4	0.3
4	4 th	88.4	83.9	0.8	0.2

Table S8. Recyclability test of MoS_2 -H₄Nb₂O₇-160 with CS₂ added in the reaction.

Reaction conditions: 270 °C, 3 MPa, 4 h.

SECTION S3 SYNTHESIS OF THE CATALYSTS

Synthesis of H_4Nb_2O_7: 0.2 g Sn₂Nb₂O₇ was dispersed in 48 mL deionized water, and then the mixture was transferred into a 100 mL Teflon-lined stainless autoclave. The pH value was adjusted to 0.9 by adding 12 mL hydrochloric acid into the mixed solution under stirring. The autoclave was sealed and heated in an oven at 160 °C for 12 h. When the reaction finished, $H_4Nb_2O_7$ was obtained by filtering, washing, and drying.

Synthesis of MoS₂: 0.92 g ammonium molybdate, and 1.2 g thiourea were dispersed into 48 mL deionized water, and then the mixture was transferred into a 100 mL Teflon-lined stainless autoclave. The pH value was adjusted to 0.9 by adding 12 mL hydrochloric acid into the mixed solution under stirring. The autoclave was sealed and heated in an oven at 160 °C for 12 h. After the hydrothermal reaction, MoS₂ was received by separation. MoS₂-X represented that the synthesis temperature was changed to X °C, while MoS₂-160 was written directly as MoS₂.

Synthesis of Sn₂Nb₂O₇: 0.8 g Nb₂O₅ was dispersed in 72 mL KOH solution (3 mol/L) and transferred into a 100 mL Teflon-lined stainless autoclave. After a hydrothermal process at 200°C for 12 h, 0.72 g SnCl₂ and 4.8 g urea were added into the solution obtained from the first step then nitrogen gas was entered to the bottom of the autoclave for 30 minutes to remove oxygen from the solution. Heated at 200 °C for 12 h, the products Sn₂Nb₂O₇ were obtained after filtration and washed and dried.

SECTION S4 REFERENCES

- 1. S. Wang, D. Xu, J. Zhao, W. Zheng, C. Hu, X. Wen, Y. Yang and Y. Li, *Catal. Sci. Technol.*, 2019, **9**, 5712-5724.
- 2. X. Xu, E. Jiang, Z. Li and Y. Sun, *Fuel*, 2018, **221**, 440-446.
- 3. C. A. Teles, P. M. de Souza, R. C. Rabelo-Neto, M. B. Griffin, C. Mukarakate, K. A. Orton, D. E. Resasco and F. B. Noronha, *Appl. Catal. B.*, 2018, **238**, 38-50.
- 4. X. Zhu, L. L. Lobban, R. G. Mallinson and D. E. Resasco, *J. Catal.*, 2011, **281**, 21-29.
- 5. H. Ren, C. Li, D. Yin, J. Liu and C. Liang, *RSC Adv.*, 2016, **6**, 85659-85665.
- 6. L. A.-R. a. J. M. V. Daming Shi, J. Catal., 2016, **340**, 219-226.
- 7. T. M. Sankaranarayanan, A. Berenguer, C. Ochoa-Hernández, I. Moreno, P. Jana, J. M. Coronado, D. P. Serrano and P. Pizarro, *Catal. Today*, 2015, **243**, 163-172.
- 8. S. Pichaikaran and P. Arumugam, *Green Chem.*, 2016, **18**, 2888-2899.
- 9. H. Taghvaei, M. R. Rahimpour and P. Bruggeman, *RSC Adv.*, 2017, **7**, 30990-30998.
- 10. B. Rahzani, M. Saidi, H. R. Rahimpour, B. C. Gates and M. R. Rahimpour, *RSC Adv.*, 2017, **7**, 10545-10556.
- 11. H. R. Rahimpour, M. Saidi, P. Rostami, B. C. Gates and M. R. Rahimpour, *Int. J. Chem. Kinet.*, 2016, **48**, 702-713.
- 12. P. Sudhakar and A. Pandurangan, *J. Porous Mater.*, 2017, **25**, 747-759.
- 13. Q. Lai, C. Zhang and J. H. Holles, *Catal. Sci. Technol.*, 2017, **7**, 3220-3233.
- 14. I. T. Ghampson, R. Canales and N. Escalona, Appl. Catal. A., 2018, 549, 225-236.
- 15. Q. Meng, H. Fan, H. Liu, H. Zhou, Z. He, Z. Jiang, T. Wu and B. Han, *ChemCatChem*, 2015, **7**, 2831-2835.