Electronic Supplementary Information for

Revealing fundamentals affecting activity and product

selectivity in non-oxidative propane dehydrogenation over

bare Al₂O₃

Dan Zhao^{1,2}, Henrik Lund², Uwe Rodemerck², David Linke², Guiyuan Jiang^{1*}, Evgenii V. Kondratenko^{2*}

¹State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing,

102249, P.R. China

²Leibniz-Institut für Katalyse e.V., Albert-Einstein-Strasse 29 a, D-18059 Rostock, Germany

*Correspondence to: jianggy@cup.edu.cn (G.J.); evgenii.kondratenko@catalysis.de (E.V.K.)

Calculations of Mass Transport Limitations

Mears Criterion for External Diffusion Limitations

External diffusion limitations are negligible if

$$\frac{r_{obs} \cdot \rho_{catalyst} \cdot \mathbf{R} \cdot \mathbf{n}}{k_{c} \cdot \mathbf{C}} < 0.15$$

 $r_{obs}~-measured~reaction~rate,~kmol/(kgcat \cdot s)$

 $\rho_{catalyst}$ – catalyst density, kg/m³

R - catalyst pellet radius, m

n - reaction order

 k_c – mass transfer coefficient, m/s

C – bulk concentration of reactant, kmol/m³

For propane dehydrogenation over the most active catalyst $Al_2O_3_8.0$ at 600°C with CO pretreatment:

$$\frac{r_{obs} \cdot \rho_{catalyst} \cdot R \cdot n}{k_g \cdot C} = [1.88 \cdot 10^5 \text{ kmol/(kg} \cdot s)] * [676 \text{ kg/m}^3] \cdot [3.55 \cdot 10^{-4} \text{ m}] * 1/([2.14 \cdot 10^{-1} \text{ m/s}]) = 0.0036 < 0.15$$

Weisz-Prater criterion for Internal Diffusion Limitations

To estimate the influence of internal diffusion on the reaction rates, we used Weisz-Prater criterion.

$$\Psi = \frac{n+1}{2} \cdot \frac{\mathbf{r} \cdot \boldsymbol{\rho}_{\text{catalyst}} \cdot \mathbf{R}^2}{\mathbf{D} \cdot \mathbf{C}}$$

If $\Psi < 1$, internal diffusion limitations are negligible

- $n \ -reaction \ order$
- r_{obs} measured reaction rate, kmol/(kgcat·s)

 $\rho_{catalyst}\,$ –catalyst density, kg/m^3

R - catalyst pellet radius, m

 $D \ - diffusion \ coefficient, \ m^2/s$

C – bulk concentration of reactant, kmol/m³

For propane dehydrogenation over the most active catalyst $Al_2O_3_8.0$ at 600°C with CO pretreatment:

$$\begin{split} \Psi &= [(1+1)/2] \quad [1.88 \cdot 10^{-5} \quad kmol/(kgcat \cdot s)] \cdot [676 \quad kg/m^3] \cdot [(3.55 \cdot 10^4)^2 \quad m^2]/([1 \cdot 10^4 m^2/s]) \cdot [5.85 \cdot 10^{-3} \ kmol/m3]) = 0.0027 < 1 \end{split}$$

Figure S1 The NH₃-TPD profiles of commercial Al_2O_3 and in-house prepared Al_2O_3 samples aftre (a) H_2 or (b) CO treatment.

Figure S2 The MS signals (a) CO; (b) CO₂; (c) H_2 detected upon CO-TPR tests using differently prepared Al_2O_3 materials.

Figure S3 DRIFT spectra of $Al_2O_3_8.0$ in the (a) OH and (b) C-H stretch regions. The sample was pretreated in He at 450 °C for 2 h (grey line), and then exposed to 5 vol%CO in He for 2 h (blue line).

Figure S4 The rate of propene formation over samples treated in H₂ (a, b) or CO (c, d) as a function of the amount of NH₃ desorbed in NH₃-TPD tests with H₂- or CO-treated catalysts. \bullet - commercial Al₂O₃; \bullet - Al₂O₃_3.0; \bullet - Al₂O₃_3.3; \bullet - Al₂O₃_3.8; \bullet - Al₂O₃_4.4; \bullet - Al₂O₃_5.3; • Al₂O₃_8.0; \bullet - Al₂O₃_10.6. Reaction conditions: 600 °C, 50 mg catalysts, 40 ml/min, C₃H₈:N₂=2.3, WHSV(propane)=37.7 h⁻¹.

Figure S5 The rate of propene formation over samples treated in CO as a function of the amount of CO consumed up to (a) 600 °C and (b) 650 °C. (\bullet) commercial Al₂O₃, (\bullet) as-prepared Al₂O₃ samples. (c) the TOF values based on CO consumed up to 600, 650 or 700 °C upon CO-TPR as a function of molar ratio of OH- and Al³⁺.

Figure S6 The selectivity to propene over non-treated (black), H₂-treated (red) or CO-treated (blue) Al₂O₃ samples.