Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

Kinetic Analysis of Ag Particle Redispersion into ZSM-5 in the Presence of Coke Using *In Situ* XAFS

Kazumasa Murata^a, Junya Ohyama^{b, c}, Atsushi Satsuma^{*a, b}

^aGraduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

^bFaculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan

eElements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

Corresponding Author

*E-mail: satsuma@chembio.nagoya-u.ac.jp.

Table S1. Structural properties of the H-ZSM-5 and Ag-ZSM-5 (Ag/Al = 0.37) obtained from N₂ adsorption-desorption isotherms

Samples	$S_{BET}{}^{a}(m^2~g^{-1})$	$S_{External}{}^{b} \left(cm^2 \ g^{-1} \right)$	$V_{micro}{}^{c}$ (cm ³ g ⁻¹)
H-ZSM-5-AP	397	2	0.17
Ag-ZSM-5-AP	352	1	0.15
Ag-ZSM-5-AA	16	2	0.01
Ag-ZSM-5-AR	358	1	0.16

 Ag-ZSM-5-AR
 358
 1
 0.16

 aBET surface area. bExternal surface area determined by t-plot. cMicropore volume determined by t-plot.

Table S2. Rate constants of the redispersion of Ag particles in Ag-ZSM-5 measured under various conditions

Experimental conditions		Rate constant k_1	t _{offset}
Temperature (°C)	O_2 concentration (%)	$(\times 10^{-2} \mathrm{min}^{-1})$	(min)
450	10	0.16±0.00	67
500	10	0.66±0.00	26
550	10	1.71±0.02	12
600	10	6.57±0.09	4
600	5	2.57±0.03	8
600	15	12.25±0.23	3

Table S3. Comparison of rate constant for the redispersion of Ag particles in Ag-ZSM-5 with and without coke

Ag-ZSM-5 samples	Rate constant k_I (×10 ⁻² min ⁻¹)	t _{offset} (min)
Ag-ZSM-5-AA (with coke)	6.57±0.09	4
Ag-ZSM-5-AH (without coke)	6.56±0.32	1

Table S4. Raman band assignments of coke species^{1–3}

Raman shift (cm ⁻¹)	Raman band assignments
1610	C=C stretch of monomeric or polycyclic aromatic hydrocarbons
1546	C=C stretches of conjugated olefins
1462, 1421	C=C stretch of cyclopentadienyl species
1377	C-H bending or aromatic ring breathing vibrations
1180	CH ₂ twisting vibrations

Table S5. Rate constants of coke combustion in Ag-ZSM-5 measured under various conditions

Experimental conditions		Rate constant k_2	t _{offset}
Temperature (°C)	O_2 concentration (%)	$(\times 10^{-2} \text{min}^{-1})$	(min)
400	10	0.03±0.00	60.0
450	10	0.05±0.00	60.0
500	10	1.15±0.00	22.6
550	10	4.74±0.02	5.6
600	10	7.81±0.08	5.9
600	1	1.28±0.00	17.6
600	5	2.32±0.02	18.3
600	15	10.55±0.12	4.9

Figure S1. Schematic illustration of experimental apparatus for *in situ* XAFS measurements.

Figure S2. Schematic illustration of *in situ* quartz cell.

Figure S3. Experimental procedure of *in situ* XAFS measurements for the redispersion of Ag particles on Ag-ZSM-5.

Figure S4. UV-vis spectra of H-ZSM-5-AP and Ag-ZSM-5-AP samples with various Ag/Al ratios. UV-vis measurements were performed using a JASCO V-770ICO instrument (JASCO Co.). UV-vis spectra were obtained at room temperature and background spectrum was obtained using Ba(SO₄) powder. UV-vis bands in range of 200–250, 250–330, and 330–500 nm were assigned to isolated Ag+ ions, small Ag_n^{δ +} (n ≤ 4) clusters, and larger Ag_n^{δ +} (n ≤ 8) clusters or Ag particles, respectively.^{1–}

Figure S5. NH₃-TPD profiles of H-ZSM-5-AP and Ag-ZSM-5-AP samples with various Ag/Al ratios.

Figure S6. IR spectra of H-ZSM-5-AP and Ag-ZSM-5-AP samples with various Ag/Al ratios pretreated under 10% O₂/Ar at 600 °C. FT-IR measurements were performed using a JASCO FT/IR-6600 instrument (JASCO Co.) with a liquid-nitrogencooled HgCdTe (MCT) detector. IR spectra were obtained at 300 °C and background spectrum was obtained using KBr powder.

Figure S7. XRD patterns of H-ZSM-5-AP and Ag-ZSM-5-AP with various Ag/Al ratios. The diffraction patterns of Ag metal^{5,6} at 38.2 and 44.4°, and AgO⁷ at 32.6 and 46.2° were not detected.

Figure S8. N_2 adsorption-desorption isotherms of H-ZSM-5 and Ag-ZSM-5 (Ag/Al = 0.37) samples. N_2 adsorption-desorption were conducted on a volumetric adsorption instrument (MicrotracBEL, BELSORPminiII) at liquid nitrogen temperature. The samples were pretreated at 120 °C under vacuum for 1 h.

Figure S9. Ag K-edge (a) k^3 -weighted EXAFS and (b) FTs of EXAFS spectra for various Ag-ZSM-5 (solid lines: raw data; broken lines: fitting data, dot lines: imaginary component of fitting data).

Figure S10. Correlation of Ag particle size with average coordination number assuming a fcc cubo-octahedron shape.

Figure S11. LCF results of Ag K-edge XANES spectra, which were measured at room temperature, of (a) Ag-ZSM-5-AP (Ag/Al = 0.37) pretreated under 10% O₂/He at 600 °C and (b) Ag-ZSM-5-AA (Ag/Al = 0.37) pretreated under He at 600 °C (solid lines: raw data; dot lines: fitting data). Ag foil and Ag-ZSM-5-AP, which were measured at room temperature, were defined as LCF reference of $[Ag^0] = 1$ and 0, respectively.

Figure S12. Ag K-edge (a) XANES, (b) k^3 -weighted EXAFS, and (c) FT-EXAFS spectra for Ag-ZSM-5-O (pink line), Ag-ZSM-5-AH (purple line), and Ag-ZSM-5-AA (red line) with Ag/Al = 0.37. The FT range in k space: 3.0–11.0 Å⁻¹.

Figure S13. LCF results of Ag K-edge XANES spectra of Ag-ZSM-5-AA (Ag/Al = 0.37) at (a) 5, (b) 10, and (c) 20 min after introducing of a flowing of 10% O₂/He at 600 °C (solid lines: raw data; dot lines: fitting data). Ag-ZSM-5-AA and Ag-ZSM-5-AP, which were measured at 600 °C, were defined as LCF reference of $[Ag^0] = 0.79$ and 0.12 ($[Ag^+] = 0.21$ and 0.88), respectively.

Figure S14. Series of Ag K-edge (a) XANES, (b) k^3 -weighted EXAFS, and (c) FT-EXAFS spectra for the Ag-ZSM-5-AH under a flowing of 10% O₂/He at 600 °C, which were measured for 40 min. (d) Time course of Ag⁰ fraction determined by LCF for a series of Ag K-edge XANES spectra. Red line indicates fitting result by pseudo-first-order kinetic model.

Figure S15. Series of Ag K-edge XANES, k^3 -weighted EXAFS, and FT-EXAFS spectra for the Ag-ZSM-5-AA under a flowing of 10% O₂/He at various temperature ((a) 450 °C (b) 500 °C, and (c) 550 °C), together with XANES and FT-EXAFS spectra of Ag-ZSM-5-AP as references.

Energy (eV)

2 3 4

5 6 k (Å⁻¹) R(Å)

Figure S16. Series of Ag K-edge XANES, k^3 -weighted EXAFS and FT-EXAFS spectra for the Ag-ZSM-5-AA under a flowing of (a) 5% and (b) 15% O₂/He at 600 °C, together with XANES and FT-EXAFS spectra of Ag-ZSM-5-AP as references.

Figure S17. Comparison of behaviors of coke combustion in H-ZSM-5-AA and Ag-ZSM-5-AA, which were measured at 600 °C under $10\% O_2/Ar$.

Figure S18. Behaviors of coke combustion in the Ag-ZSM-5-AA measured at 400 $^\circ$ C under 10% O₂/Ar.

Figure S19. Raman spectra of (a) Ag-ZSM-5-AA and (b) Ag-ZSM-5-AR450 (Ag/Al = 0.37) in the region of coke species. The Raman spectra were obtained by a JASCO RMP-330 with a Peltier cooled charge coupled device (CCD) detector using a visible laser ($\lambda = 532$ nm).

Figure S20. (Middle) ²⁷Al MAS NMR spectra of H-ZSM-5-AP and Ag-ZSM-5-AP (Ag/Al = 0.37), together with Gaussian fitting results. (Top) fitting error and (bottom) each fitted Gaussian peak. Asymmetric NMR peaks were fitted using two or more Gaussian peaks because ²⁷Al have quadrupole moment and Al atoms in ZSM-5 were slightly different.

Figure S21. (middle) ²⁷Al MAS NMR spectra of H-ZSM-5-HT and Ag-ZSM-5-HT with various Ag/Al ratio, together with Gaussian fitting results. (top) fitting error and (bottom) each fitted Gaussian peak. Asymmetric NMR peaks were fitted using two or more Gaussian peaks because ²⁷Al have quadrupole moment and Al atoms in ZSM-5 were slightly different.

Figure S22. NH₃-TPD profile of H-ZSM-5-AP and H-ZSM-5-HT.

Figure S23. NH₃-TPD profile of Ag-ZSM-5-AH, together with NH₃-TPD profiles of H-ZSM-5-AP and Ag-ZSM-5-AP as references.

References

- 1 T. Yumura, A. Oda, H. Torigoe, A. Itadani, Y. Kuroda, T. Wakasugi and H. Kobayashi, *J. Phys. Chem. C*, 2014, **118**, 23874–23887.
- 2 K. I. Shimizu, K. Sugino, K. Kato, S. Yokota, K. Okumura and A. Satsuma, J. Phys. Chem. C, 2007, 111, 1683–1688.
- 3 W.-S. Ju, M. Matsuoka, K. Iino, H. Yamashita and M. Anpo, J. Phys. Chem. B, 2004, 108, 2128–2133.
- J. Shibata, K. I. Shimizu, Y. Takada, A. Shichi, H. Yoshida, S. Satokawa, A. Satsuma and T. Hattori, *J. Catal.*, 2004, **227**, 367–374.
- 5 F. Wang, J. Ma, G. He, M. Chen, C. Zhang and H. He, *ACS Catal.*, 2018, **8**, 2670–2682.
- 6 Z. Huang, J. Zhang, Y. Du, Y. Zhang, X. Wu and G. Jing, *ChemCatChem*, 2019, 561–568.
- 7 B. Gauri, K. Vidya, D. Sharada and W. Shobha, *Res. J. Chem. Environ.*, 2016, 20, 1–5.