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Table S1: Tabulated summary of metal-containing multi-elemental copper-free CO; reduction electrocatalysts. Abbreviations: bmim, 1-butyl-3-methylimidazo-
lium; CNF, carbon nanofibres; EMIM, 1-ethyl-3-methylimidazolium; Fc, ferrocene; FE, faradaic efficiency; FTO, fluorine-doped tin oxide; MeCN, acetonitrile; ML,
monolayer; NGO, nitrogenated graphene oxide; NHE, normal hydrogen electrode; NPs, nanoparticles; Pc, phthalocyanine; RHE, reversible hydrogen electrode;
SCE, saturated calomel electrode; YLS—29BC, conductive carbon paper used for gas diffusion layer (no explanation given for abbreviation). Symbols: (CI,N):Mn,

chlorine and nitrogen-doped manganese.

. Reported
Elemental Morphology or Supportin Electrolyte Potential at current
., Material P . gy PP g i .y reported current . FE (product) Ref.
composition size electrode (conditions) densit density
y (mA cm™)
Vanadium
30% (H2)
Glassy carbon Aqueous 0.1 M KHCOs at pH 30% (HCOOH)
V=1n205 V-doped In20; electrode 6.8 (saturated with CO,) 0-83 Vvs. RHE 25 25% (CO) !
15.8% (CHsOH)
Chromium
Aqueous 0.1 M KHCOs at pH 75% (CO)
Cr—N-C Cr—N-C Carbon paper 6.8 (saturated with CO,) 0.7 V vs. RHE 0.5 25% (H) 2
Molybdenum
48% (CH30H)
0.5 M [bmim]BFs/MeCN 22% (CH4)
Mo-Ag Mo-Ag Nanosheets Carbon paper (saturated with CO5) 0.7 V vs. RHE 7.0 18% (CO) 3
12% (H2)
Indium-
doped 9 i 9 -2. . .59
Mo—p MoP _ p 30 wt% [bmlm]PEs, 65 wt% 2.2V vs _13.8 96 OSA (HCOOH) 4
porous MeCN, and 5 wt % H,0 Ag/AgCl 3.5% (CO and H,)
carbon
4 mol% / 96 mol% 0
Mo-Se-S MoSes alloy Monolayers Glassy carbon | £\ 101 B, /1,0 at pH 4 ~1.15 V vs. RHE -43 >4.8% (Ho) 5
electrode . 45.2% (CO)
(saturated with CO,)
Vertically 96 mol% water / 4 mol% o
Mo-S Layered MoS; aligned Glassy carbon | 101 BE, ot pH 4 (saturated | ~0.76 V vs. RHE -65 98% (CO) 6
electrode . 2% (Hz)
nanoflakes with CO,)
71.2% (CH3OH)
) ) 0.5 M [bmim]BF4 / MeCN 10% (CO)
Mo-Bi Mo-Bi Nanosheets Carbon paper (saturated with CO5) 0.7 V vs. RHE 12.1 10% (H2) 3
8% (CHa)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
Mo-doped Au Aqueous 0.5 M
— + - — o,
Mo—-Au NPs 8.2+0.2nm Carbon black KHCO; (saturated with CO,) 0.4V vs. RHE 11.22 97.5% (CO) 7
60.9% (HCOO-)
Mo—-Pb MoO, on Pb - Lead electrode | Aqueous 0.3 M [bmim]PFs —2.3Vvs. Fc/Fct - 21.8% (CO) 8
8.2% (C;04)
Tungsten
Au overlayer on Near surface Aqueous 0.1 M KHCO3 -1.8Vvs. o
W-Au w alloy Tungsten (saturated with CO;) Ag/AgCl 0.052 0.5% (CH3OH) ?
Glassy carbon 50 vol% / 50 vol% EMIM—BF, / 76% (H,)
W-Se WSe; Nanoflakes clectrode H,0 at pH 3.2 0.164 V vs. RHE 18.95 24% (CO) 10
Manganese
Aqueous 0.1 M KHCOs at pH 70% (CO)
Mn—N-C Mn—N-C Carbon paper 6.8 (saturated with CO,) 0.6 V vs. RHE 0.5 30% (Hs) 2
) Single Mn
(CLN):Mn (CLN):Mn on atoms on Carbon paper | AQueous 0.5 MKHCOs buffer | o, o e -13.4 97% (CO) 11
graphene (saturated with CO3)
graphene
(Br, N):Mn on Single Mn Agueous 0.5 M KHCO3 buffer
(Br, N):Mn P atoms on Carbon paper d - 3 —0.6 V vs. RHE - 92% (CO) 11
graphene (saturated with CO3)
graphene
(I, N):Mn on Single Mn Agqueous 0.5 M KHCO3 buffer
(I, N):Mn P atoms on Carbon paper d - 3 —0.5V vs. RHE - 89% (CO) 11
graphene (saturated with CO3)
graphene
Iron
Glassy carbon Aqueous 0.1 M KHCOs at pH .
FeMn—-N—-C FeMn-N-C electrode 6.8 (saturated with CO,) 0.50 V vs. RHE 1.8 80% (CO) 12
Porous carbon Aqueous 0.5 M NaHCO3 o
Fe-N-C paper buffer (saturated with CO,) 0.5 Vvs. RHE 6.0 90% (CO) 13
Fe—N—-C 10 nm o
Fe-N-C Mesopore Glassy carbon | 1 ieous 0.5 M KHCOs buffer | ~0.47 V vs. RHE 15 85% (CO) 14
. electrode 15% (H2)
diameter
Homogenous
. . 64% (CH3OH)
. FeS,—NiS nanocompo- Carbon fibre Aqueous 0.5 M KHCO; buffer o .
FeSz—NiS nanocomposite site with 14 nm | paper at pH 7.5 (saturated with CO,) 0.6 Vvs. RHE 7.8 19% (unspecified) 5

NPs

17% (H.)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
80.2% (CH3OH)
Fe—P FeP nanoarray - Titanium mesh Aqueous O'S,M KHCOs —0.2 Vvs. RHE - 14.1% (C,HsOH) 16
(saturated with CO,)
5.7% (Ha)
. 65.2% (CH30OH)
Fe-P-S FeaPSs L3nmthick | ¢ hon paper | fdueous 0-5 MKHCO, 0.2V vs. RHE - 23.1% (CH3CH,0H) 17
nanosheet (saturated with CO,)
11.7% (H,)
Polished pellet
electrodes - . o
Fe-Ni-S-Se | FeqsNigsSsSes - encapsulated | AcCetonitrile (saturated with | 3, \/ ¢ e 100 95.3% (CO) 18
. CO;, 24 ppm water) 4.7% (Ha)
in a Teflon
housing
Ruthenium
Metal loaded Aqueous 0.5 M KHCO; o
Ru-Pd Ru:Pd (1:1) alloy - gas diffusion (saturated with CO,, gas -1.1Vvs. NHE -80 90% (HCOOH) 19
. . 10% (H2)
electrode diffusion cell)
Cobalt
Co centre with Pc Aqueous 0.1 M KHCOs at pH 99% (CO)
Co—Pc ligand Carbon paper 6.8 (saturated with CO,) 0.8 V vs. RHE 4.0 1% (Ha) 20
Cobalt and
. nitrogen- Glassy carbon _ _ 86% (H,)
Co—N-C (Co, N):C doped carbon clectrode Aqueous 0.5 M KHCO; buffer 0.57 V vs. RHE 5.6 14% (CO) 14
matrix
Uniformly
dispersed N, P
N-P-Co ) Y Aqueous 0.1 M KHCO; buffer 62% (CO)
(N, P, Co):C and Co on Carbon paper at pH 6.8 (saturated with CO5) 0.59 V vs. RHE 3.1 38% (Hs) 21
porous Carbon
framework
CoOx Carbon paper -14.9+0.8
nanoclusters on . pap Aqueous 0.5 M KHCO; buffer (CO partial 80% (CO)
Co-Fe - with gas . —0.55 V vs. RHE 22
graphene e (saturated with CO3) current 20% (H2)
diffusion layer .
supported FePc density)
76.4% (HCOOH)
Coce EZ;%“ ;‘:i(c)fes 103 nm Glassy carbon | Aqueous 0.1 MKHCO; buffer | o\ o 6.1 23.6% (CO, Ha,CHiOH, | o
P particles electrode at pH 6.8 (saturated with CO,) ’ ’ (HCOO) CH5CH,0H,

unspecified amounts)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
Coo.75Nio.25
200-300 nm .
ComNi—N—C nanoalloys on N- long Glassy carbon Aqueous 0.5.M NaHCO3 —0.9V vs. RHE _13.4 85% (CO) 2
doped carbon . electrode (saturated with CO3) 15% (H2)
. nanofibres
nanofibres
Nickel
Carbon coated
Nickel 34 nm o Glassy carbon Aqueous 0.5.M KHCO3 buffer —0.7V vs. RHE —7 93.7% (CO) 25
. crystallite size electrode (saturated with CO,)
Nanoparticles
Ni and N-doped
porous carbon on | _ Carbon cloth | Aqueous 0.5 M KHCO; 0.7V vs. RHE 112 94% (CO) 26
carbon nanotube
. hybrid
Ni=N-C Ni-incorporated 80 nm Ni NPs
0,
nitrogen-doped with 10 nm N- Carbon Aqueous 0.1 M KHCOg.buffer -1.0V vs. RHE -3.12 98.4% (CO) 27
substrate at pH 6.8 (saturated with CO;) 1.6% (Hy)
carbon doped carbon
R Glassy carbon Aqueous 0.5 M KHCO3 93% (CO)
(Ni, N)-C electrode (saturated with CO3) 0.67 Vvs. RHE 3.9 7% (H3) 14
R Glassy carbon Aqueous 0.5 M KHCOs at pH 95% (CO)
(Ni, N):C electrode 6.8 (saturated with CO,) 0.7V vs. RHE 11 5% (H3) 28
Ni NPs dispersed
. on S-doped Glassy carbon Aqueous 0.5 M KHCO; at pH o
Ni=N=5 nitrogenated electrode 7.3 (saturated with CO,) 0.72 Vvs. RHE 22 97% (CO) 29
carbon
NiOx nanoclusters Carbon paper -0
X .
Ni—Fe on graphene - with gas Aqueous 0.5 MKHCOs buffer |, /¢ ppe (COpartial | g0 5 4 329 (co) 22
e (saturated with CO3) current
supported FePc diffusion layer -
density)
-1.4 mA (not
normalized to | 38.5% (CzH4)
. . Glassy carbon Aqueous 0.5 M NaHCO3 -1.4Vvs. area; 18% (H.)
Ni=Zn NiosZno10 electrode (saturated with CO3) Ag/AgCl electrode 8.5% (CH4) 30
area not <1.5% (CO)
given)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
61% (H2)
Aqueous 0.1 M K;S04 33% (CO)
Ni—Al NisAl - SI':CS:rVOZZrbO” buffered with KHCO; at pH A1./3As \CIIVS' - 3% (CHs(CH,),0H) 31
4.5 (saturated with COy) &/A8 2% (CH3OH)
1% (HCOO")
Spherical
L 46.3% (H2)
Ni,P T_c’zg’h:ogy ﬁ::?;'”'“m 23“307“; (()éittﬂr:t:z?;i?:fcfg) 0.05 V vs. RHE -0.04 42.3% (methylglyoxal) | 32
. H pr /. 2 4.65% (2,3-furandiol)
diameter
?\"\:J:rer;\a:) Aluminium Aqueous 0.5 M KHCO; buffer 34.6 (Ho)
Nis2Ps phology q : 3 0.00 V vs. RHE -0.33 32.8% (2,3-furandiol) 32
1-20 um mesh at pH 7.5 (saturated with CO;)
. 32.4% (methylglyoxal)
Ni—p diameter
Spherical
. 45.4% (methylglyoxal)
NisPa morphology | Aluminium Aqueous 0.5 M KHCOs buffer ) o/ ¢ oy -0.42 34.3% (2,3-furandiol) | 32
1-20 um mesh at pH 7.5 (saturated with CO;)
) 16.2 (H,)
diameter
Spherical
. morphology Aluminium Aqueous 0.5 M KHCO; buffer | . 61.1% (methylglyoxal)
NiP2 1-20 um mesh at pH 7.5 (saturated with CO;) 0.05Vvs. RHE 0.21 39.3% (2,3—furandiol) 32
diameter
96.1% (H2)
. 1-5 um . aqueous 0.1 M NaCOs buffer | _ 2.5% (CHa)
NiGa particle size Graphite plate at pH 6.8 (saturated with CO;) 0.48 Vvs. RHE 1.3% (CzHs) 3
0.1% (CaHa)
98.7% (H2)
Ni—Ga NisGa 1=5um Graphite plate | 29u€0us 0.1 MNa;COs buffer 1 \o\/ o oy - 1.2% (CHa) 33
particle size at pH 6.8 (saturated with CO;)
0.1% (CaHa)
98.5% (H2)
. 1-5 um . aqueous 0.1 M Na,CO; buffer 0.7% (CHa)
NisGas particle size Graphite plate at pH 6.8 (saturated with CO;) 0.48 Vvs. RHE 0.6% (C2Hs) 3
0.2% (C2Ha)
Palladium
51% (H2)
Pd-Sn Pd,SN 1=5nm Carbon paper | Adueous 0.5 MKHCOs atpH 1 4ay ¢ pie - 26% (HCOO-) 34
particle size 7.4 (saturated with CO,) 23% (CO)
0
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) densit density
¥ (mA cm™)
43% (HCOO")
Pdasn NPs on >nm Carbon paper | A9ueous 0.3 MKHCOsatpH 1 45y g piE 30 34% (H,) 34
activated carbon particle size 7.4 (saturated with CO;) o
8% (CO)
54% (HCOO")
PdsSn NPs on I>nm Carbon paper | A9ueous 0.3 MKHCOsatpH 1 4 45y g pitE 25 26% (H,) 34
activated carbon particle size 7.4 (saturated with CO,) o
20% (CO)
63%
Pd,Sn NPs on 1-5nm Aqueous 0.5 M KHCO; at pH (HCOO")
activated carbon particle size Carbon paper 7.4 (saturated with CO,) 0.43 Vivs. RHE 20 35% (H2) 34
9% (CO)
Pd-Sn—C PdSn NPs on 1-5nm Aqueous 0.5 M KHCO; at pH 99%
. . . Carbon paper q ) . 3atp —0.43 V vs. RHE -30 (HCOO") 34
activated carbon particle size 7.4 (saturated with CO,)
0.3% (CO)
73% (HCOO")
PdossnNPson ) 1-3nm Carbon paper | A9ueous0-3 MKHCOsatpH 1 45y g piE -33 22% (H,) 34
activated carbon particle size 7.4 (saturated with CO;)
5% (CO)
42% (HCOO")
Pdo.25Sn NPs on 1-5nm Aqueous 0.5 M KHCOs at pH 34% (H,)
activated carbon particle size Carbon paper 7.4 (saturated with CO,) 0.43 Vvs. RHE 30 24% (CO) 34
10wt% Pd in VN Aqueous 0.5 M NaHCO3; 57.8% (Ha)
Pd-VN (vanadium - Carbon paper buffer at pH 7.3 (saturated —0.6 V vs. RHE —-0.025 AV 35
o . 28.3% (CO)
nitride) with CO,)
Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M 0
Pd4sPtes s 4.4 nm Carbon KH,PO) at pH 6.7 (saturated 0.5V vs. RHE 1.9 1.5% (HCOOH) 36
with COz)
Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M o
Pd—Pt Pd11.5Ptss s 3.8 nm Carbon KH,PO) at pH 6.7 (saturated 0.5V vs. RHE 2.2 1.7% (HCOOH) 36
with COz)
Aqueous 0.1 M phosphate
Pdz05Ptrs1 4.1nm Carbon buffer (KzHPO, /01 M ~0.5 V/ vs. RHE -23 2.6% (HCOOH) 36

KH2PO,) at pH 6.7 (saturated
with COz)
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Elemental
composition

Material

Morphology or
size

Supporting
electrode

Electrolyte
(conditions)

Potential at
reported current
density

Reported
current
density

(mA cm™)

FE (product)

Ref.

Pd-Pt

Pds.sPtoss

4.4 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

-1.9

1.5% (HCOOH)

36

Pd39.3Pteo.7

3.8 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

12.8% (HCOOH)

36

Pdas.6Ptso.4

4.0 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

27.0% (HCOOH)

36

Pdss.7Ptao3

3.7nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

35.1% (HCOOH)

36

Pd70.9Pt29.1

4.3 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

58.8% (HCOOH)

36

Pd7s.gPt21.2

4.2 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

39.9% (HCOOH)

36

PdsssPt11.4

4.2 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

18.5% (HCOOH)

36

Pdgs.1Pts.g

4.1 nm

Carbon

Aqueous 0.1 M phosphate
buffer (K;HPO4 /0.1 M
KH2PO,) at pH 6.7 (saturated
with COz)

-0.5Vvs. RHE

35.1% (HCOOH)

36

Pd-Au

Aug.75Pdo.25

Thin films (ca.
100 nm thick)

Au-Pd alloy

Aqueous 0.1 M KHCO; buffer,
pH 6.8 (saturated with CO,)

-0.88 V vs. RHE

76% (CO)
13% (Ha)
3% (HCOO")

37

AugssPdo.as

Thin films (ca.
100 nm thick)

Au-Pd alloy

Aqueous 0.1 M KHCO; buffer,
pH 6.8 (saturated with CO,)

-0.88 V vs. RHE

59% (CO)
16% (Ha)
8% (HCOO")

37
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
L 42% (CO)
N Il oo OINO bt | oasvi e | 13| Skl y
PH®. 2 10% (HCOO")
4 Pd overlayers 0.1 M KH,P04/0.1 M K;HPO4 0
Pd—AU on Au Gold electrode at pH 6.7 (saturated with CO5) 0.6 V vs. RHE 73.77% (CO) 38
Ca.5nm -2.0
AussPds surface- Carbon/carbon | Aqueous 0.1 M ‘ ~0.5V vs. RHE (CO partial 80% (CO) 39
paper KHCOs (saturated with CO,) current
segregated Pd -
density)
. Aqueous 0.5 M NaHCO3
0, 0,
Pd—NbN 1O.Wt.ﬁ Pd !n .NbN - Carbon paper buffer at pH 7.3 (saturated —0.6 V vs. RHE -0.40 51.9% (Ho) 35
(Niobium nitride) . 38.4% (CO)
with CO,)
10wt% Pd in TaC Physical vapor 50% (CO)
Pd-TaC (tantalum deposited 2 ML | TaC thin film ég‘t‘jgézgi im 'ggH)cm -0.6 V/ vs. RHE -1.37 37% (Ha) 40
carbide) Pd 2 13% (unspecified)
. Physical vapor 65% (H,)
0,
Pd-NbC ?ﬁ‘ggﬁ ;dc;nrggg) deposited 2 ML | NdC thin film ég:j;ﬁg;m |ng)¢03 ~0.6 V vs. RHE -0.38 20% (CO) 40
Pd 2 15% (unspecified)
Aqueous 0.1 M KHCO; buffer 94% (HCOO")
Pd—Zn PdZn NPs 3.7 nm Carbon at pH 6.8 (saturated with CO») 0.4 V vs. RHE 8.3 2% (CO) 41
96% (CO)
PdAg; 4.1nm Carbon ;-\fusosu;(();ttﬂr:tig?/zi?;g(e)r) -0.8 V vs. RHE -10.8 10% (H2) 41
PH®. 2 4% (HCOO")
Dendrites
_ Aqueous 0.1 M KHCO3 at pH _ . o
Ag7oPd3o roughness 6.8 (saturated with CO,) 0.8 V vs. RHE 9.3 98.6% (CO) 42
factor of 47.5
Aqueous 0.1 M
— + - - + 0,
Pd-Ag Ag15Pdss 3.3+0.4nm Carbon black KHCO; (saturated with CO,) 0.8 V vs. RHE 3.3 100.0 + 4.0% (CO) 43
-1.0
Ag-terminated Aqueous 0.2 M NaHCOs (CO partial
+ — 0,
PdAg 25.5+4.9 nm Carbon paper (saturated with CO,) 0.75 V vs. RHE current 87.5% (CO) 44
density)
Aqueous 0.5 M NaHCOs at pH 70% (CO)
PdsoAg20 5-10nm Carbon paper 7.35 (saturated with CO») 0.9 V vs. RHE 2.5 30% (Ha) 45
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
70% (H2)
. _ Aqueous 0.5 M NaHCOz at pH | _ _ o
Pd—Co PdsgoCo20 5-10nm Carbon paper 7.35 (saturated with CO») 0.9 Vvs. RHE 2.5 30% (CO) 45
. . Aqueous 0.5 M NaHCOs at pH 55% (H2)
Pd—Ni PdsgoNizo 5-10nm Carbon paper 7.35 (saturated with CO») 0.9 V vs. RHE 1.0 45% (CO) 45
Pd nanoparticles Mesoporous 0 .
Pd-Ti on Tio, with 10 nm Titanium foil | Adueous 05 MNaHCOsatpH | 4, | oo e -2.0 88.2% (HCOO") 46
) 6.8 11.8% (H,)
nanosheets pore size
Platinum
Pton 100 nm Glassy carbon
Pt-N-C-O nitrogenated diameter electryode Aqueous 0.1 M KNOs at pH 2 —0.30 V vs. RHE - 41% (CHsOH) a7
graphene oxide particle size
Silver
AgT ﬁﬁ ;?(;’Opart'des <10 nm Ag NP Aqueous 0.5 M K;SOzat pH | —1.68 V/ vs. -101 92% (CO) i
_ ) ) - ) o
nanosheets size 9.96 (saturated with CO,) Ag/AgCl (CO) 8% (Hz)
69.5% (H,)
20 nm particle | Gas diffusion Aqueous 0.5 M KHCO; buffer | =2.0V vs. 19.5% (CHa)
Ag-Co Ag-Co size layer (saturated with CO3) Ag/AgCl 94 8% (CO) 49
3% (CoHa)
54.4% (H,)
) 19.7% (CO)
Zn dendriteson | 20-50 um Ag disk Aqueous 0.IM -1.41V vs. RHE -26 10.5 % (CH3OH) 50
Ag foam pores KHCOs (saturated with CO,) 5.9% (CHa)
I/ 4
Ag=Zn 4.0% (HCOO")
0,
AgsZn g;allyr:rr\r/]stalline Aqueous 0.1 M KHCOs buffer | —=1.2 Vvs. 3.9 22; E(I-:|O)) 51
S5£118 - . —J. (] 2
foil at pH 6.8 (saturated with CO,) | Ag/AgCl 5% (HCOO")
AgsSn core
AgsSn core with with 2 nm
Aqueous 0.5 M NaHCOs at pH 80% (HCOO")
Ag-Sn SnOy shell amorphqus Carbon paper 7.2 (Saturated with CO,) 0.8 V vs. RHE 16 20% (CO) 52
metal oxide
layer
Ag NPs with . Aqueous 0.5 M KHCO; buffer o
Ag—Cl surface Cl Carbon fibre at pH 7.2 (saturated with CO5) 0.8 V vs. RHE 9.4 98% (CO) 53
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
-2.48
1 H 0,
Ag—Br Ag NPs with _ Silver foil Aqueous 0.1 M KHCO; buffer —0.6V vs. RHE (CO partial 95% (CO) 54
surface Br at 6.8 current 5% (Hz)
density)
-0.86
1 H 0,
Ag NPs WIth _ Silver foil Aqueous 0.1 M KHCO; buffer —0.6V vs. RHE (CO partial 72% (CO) 54
A surface iodine at 6.8 current 28% (H2)
g density)
lodide-derived . . Aqueous 0.5 M KHCO3 0
(ID) Ag Porous Silver foil (saturated with Co,) 0.7 V vs. RHE 16.7 94.5% (CO) 55
Gold
A AuAg NPs on ZnO Aqueous 0.1 M _ _ 94.7% (CO)
Au-Ag-zn support 10nm Zn0 KHCOs3 (saturated with CO,) 0.4V vs. RHE 03 2.6% (H2) >6
99% (H2)
. T . Aqueous 0.1 M -1.61V vs. o .
Aup.oSho 1 Thin films Titanium foil KHCO; (saturated with CO,) Ag/AgCl 10 6% (HCOO") 57
3% (CO)
59% (H2)
AusSn 23.0£2.9nm | Glassycarbon | Adueous 0.1 MMNarCOs ~1.0V vs. RHE 6.5 28% (HCOOH) 58
(saturated with CO,)
6% (CO)
71% (H2)
Ausn 31.8+3.9nm | Glassycarbon | fdueous 0.1 MMNarCO; ~1.0V vs. RHE 6.0 22% (HCOOH) 58
(saturated with CO,)
6% (CO)
55% (H2)
AuSn, 32.4+3.7nm | Glassy carbon ég:j;ﬁg&lm |ng)¢03 -1.0 V vs. RHE -6.0 35% (HCOOH) 58
Au-Sn 2 10% (CO)
65% (HCOOH)
AuSn, 33.0£2.5nm | Glassycarbon | fdueous 0.1 MMaRCO; 1.0V vs. RHE 3.5 28% (Ha) 58
(saturated with CO,)
7% (CO)
-1.5
(CO partial
0.1 monolayer Single crystal current
thick Sn plane with Aqueous 0.1 M density) o
deposited metal Au(110) KHCO3s (saturated with CO,) 0.80 Vvs. RHE -2.1 43% (CO) >9
Au(110) surfaces deposition (H2 partial
current
density)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
25.7 + 8.0% (CO)
Au-Pb Au decorated Pb | 42 +5nm S::cst‘c‘ryo;irbo” 23“307“3 (()éittﬂr:t:z?;i?:fcfg) -1.07 V vs. RHE -10.8+0.5 | 25.5+0.7% (HCOOH) | 60
pr /. 2 2.8 0.4% (CHa)
-1.2
(CO partial
0.1 monolayer- Single crystal current
thick-Co plane with Aqueous 0.1 M density) 0
Au=Co deposited metal Au(110) KHCO3s (saturated with CO,) 0.60 Vvs. RHE -0.1 87 % (CO) >9
Au(110) surfaces deposition (H2 partial
current
density)
-4.0
14-5.5 nm Carbon Aqueous 0.1 M KHCO; at pH (CO partial | 92% (CO)
. . —J. . . 3 (0]
Au-Ni AuNi particle size nanofibre 6.8 (saturated with CO,) 0.98 Vvs. RHE current 8% (Hz) 61
membrane .
density)
AuFe core with Core shell Glassy carbon Aqueous 0.5 M KHCOs at pH 97.6% (CO)
Au-Fe Au shell nanoparticle electrode 7.2 (saturated with CO,) 0.4V vs. RHE 11.05 2.4% (H2) 62
Zinc
Zn—coordinated Aqueous 0.5 M KHCOs at pH 95% (CO)
N-doped carbon Carbon cloth 7.33 (saturated with CO,) 0.5 Vvs. RHE >0 5% (H3) 63
Zn=N ZnN,4 on carbon Aqueous 0.5 M KHCO3 at pH
4 _ E 3 _ _ o
support Carbon paper 7.2 (saturated with CO) 0.73 V vs. RHE 13.62 95% (CO) 64
3.9 nm thick Aqueous 0.1 M KHCO; buffer 94.2% (CO)
Zn=s Zns nanosheets FTO glass at pH 6.8 (saturated with CO;) 0.8 Vvs. RHE 4.28 5.8% (H2) e>
4-Amino-
. - 59.9% (CH3OH)
Zn—Sn Sn—Zn Electrodeposit | pyridine Aqueous0.IM -0.5V vs. RHE 20 21% (H,) 66
ed film immobilized on | KHCO; (saturated with CO,)
11% (CO)
carbon paper
95% (HCOOH)
Glassy carbon Aqueous 0.5 M N
Zn—In Zno.95lNg 05 Ca. 50 nm clectrode KHCO; (saturated with CO) 1.2 Vvs. RHE 22 z; E(I_:'O)) 67
o (M2
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
5-10 nm
. Aqueous 0.1 M KHCO; buffer o
Zn—Ga ZnGaz04 crystals with Titanium sheet | at pH 6.82 (saturated with —0.8 V vs. RHE —-0.55 96% (CO) 68
3.8 nm pore 4% (H2)
. COy)
size
. . Irregular plates . . Aqueous 0.5 M NaHCO3 o
Zn-Bi ZnBi3 NPs (ca. 500 nm) Zinc foil (saturated with CO,) 0.8 Vvs. RHE 3.8 94% (HCOOH) 69
Cadmium
cds nanorods Titanium Aqueous 0.5 MKHCOs 0.9V vs. RHE 15 95% (CO) 70
Cd=S substrate (saturated with CO,)
0,
Cds nanorods Carbon paper Aqueous 0.1 M KHCO; —1.2 V vs. RHE -27.1 ?;; E(I-:|O)) 71
0 (M2
Gallium
GaAs (111), Single crystal Aqueous 0.2 M Na,SO, at pH -1.2-1.4V vs. o
arsenide capped plane 4 (saturated with CO,) SCE 0.20 1% (CHOH) 2
GaAs (111), Single crystal Aqueous 0.2 M Na,SO, at pH -1.2-1.4V vs. 0
gallium capped plane 4 (saturated with CO,) SCE 0.29-0.34 0.27-0.14% (CH30H) 72
GaAs (111), Single crystal Aqueous 0.2 M Na,SO, at pH -1.2-1.4V vs. o
Ga—As gallium capped plane 4 (saturated with COy) SCE 0.34 0.30-0.80% (CH3OH) 2
GaAs (110), Single crystal Aqueous 0.2 M Na,SO, at pH -1.2-1.4V vs. 0
gallium capped plane 4 (saturated with COy) SCE 0.13 0.14% (CH3OH) 2
GaAs (110), Single crystal Aqueous 0.2 M Na,SO, at pH -1.2-1.4V vs. o
gallium capped plane 4 (saturated with COy) SCE 0.15-0.24 0.04% (CH3OH) 2
Tin
-21.7
. . (HCOO- R
SheAl Sn0O; NPs with _ Carbon fibre Aqueous 0.5 M KHCO3 —2.0Vvs. artial 65% (HCOO") 73
Al,O3 support paper (saturated with CO;) Ag/AgCl crijrrent 35% (H,)
density)
SnO, 3—5nm (NPs) 54.8 + 2 % (CH3OH)
Sn—Pd nanoparticles on ca. 1 nm thick Carbon paper élu(igﬁjrgémrhcgé a)t PH -0.24 V vs. RHE -1.45 40% (H,) 74
Pd nanosheets (nanosheets) ) 2 7% (HCOO")
SnS on Au - Aqueous 0.1 M KHCO3 o
Sn-S nanoneedles 5 nm grain size | Carbon paper (saturated with CO,) 0.75 V vs. RHE 55 93% (HCOOH) 75
1 0,
Sn—Ti SnoTios02 >nmoparticle | o paper | Aqueous 0.5 M KHCOs ~0.54 V vs. RHE -3.91 94.5% (CO) 76
size 5.5% (H2)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & . .y reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
Sn single atom on Glassy carbon Aqueous 0.25 M KHCOs buffer 0
Sn=N-C N-doped carbon electrode at pH 7.1 (saturated with CO,) 1.6 Vivs. SCE 117 74.3% (HCOOH) 7
DR DR . . Aqueous 0.1 M KHCOs at pH -1.4V vs. . 91% (HCOO")
Sn—Pb-Sb Sn—Pb-Sb Alloy foil Alloy foil 8.4 (saturated with CO;) Ag/AgCl 8.5 9% (unspecified) ’8
Electro-
deposited from Aqueous 0.5 M -2.0Vvs. o .
Sn7sPbas fluoroborate Carbon cloth KHCOs (saturated with CO,) Ag/AgCl 2 Ca. 60% (HCOO") 9
salt bath
Electro-
deposited from | Teflonated Aqueous 0.5 M -2.0Vvs. o .
Sn7sPbas fluoroborate carbon paper KHCOs (saturated with CO,) Ag/AgCl 17 90-95 % (HCOO) 9
Sn—Pb salt bath
2-3 umin Aqueous 0.5 M KHCO;3 buffer -2.0Vvs. 78% (HCOO")
Sn77.3Pb27 diameter Carbon paper (saturated with CO3) Ag/AgCl 45 22% (H2) 80
o =
Shee -Pb 2-3 umin Carbon baper Aqueous 0.5 M KHCOs; buffer —2.0Vvs. 457 Z:?;’ (HCOO?) 80
36337 diameter pap (saturated with CO,) Ag/AgCl ' H ') ?
2
2-3 umin Aqueous 0.5 M KHCOs buffer -2.0Vvs. 75% (HCOO")
Sn3s.1Pbeas diameter Carbon paper (saturated with CO3) Ag/AgCl 40 25% (H2) 80
-20.9
. SngoBizo core with | 19.9+1.2 YLS-29BC gas | Aaueous 0.5 MKHCO, (HCOO" 95.8% (HCOOH)
Sn—Bi . e (saturated with CO,, gas -0.88 V vs. RHE partial 81
Bi-SnOy shells nm diffusion layer e . 4.2% (H,)
diffusion flow cell) current
density)
Lead
Pb NPs with . Aqueous 0.5 M KHCO; buffer o
Pb—Cl surface Cl Carbon fibre at pH 7.2 (saturated with CO5) 1.0V vs. RHE 10 90% (HCOOH) 53
Bismuth
. . 16 nm thick Glassy carbon Aqueous 0.5 M NaHCO3 89.6% (HCOOH)
Bi-Te BizTes hexagonal NPs | electrode (saturated with CO3) 0.9 Vvs. RHE 5 10.4% (CO and H,) 82
Bi NP anchored .
Bi—C on Carbon A4nmparticle | 0 aner | AQueous 0.5 MKHCOs buffer ) o\ o o —10.7 95.2% (HCOOH) 83
nanotubes diameter at pH 7.3 (saturated with CO;)
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Reported

Elemental Morphology or Supportin Electrolyte Potential at current
. Material P . &y PP & s M reported current . FE (product) Ref.
composition size electrode (conditions) . density
density °
(mA cm™)
-24.4
Bi NPs on 800 nm thick Glassy carbon Aqueous 0.5 M NaHCO (HCOG®
T— : 3 - H ~ 0, —
Bi-C Bi>O3; nanosheets | nanosheets electrode (saturated with CO,) 0.86Vvs. RHE crijarrrZilt 100% (HCOO") 84
density)
BiOBr - Carbon paper | Aqueous 0.1 MKHCO, ~0.95 V vs. RHE -80 99% (HCOO") 85
Bi_Br (saturated with CO3)
. Aqueous 2 M KHCOs (gas 90% (HCOO")
BiOBr Carbon paper diffusion cell) 200 10% (Ha) 85
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