Supplementary Information

For

Biocatalysed Synthesis of Chiral Amines: Continuous Colorimetric Assays for Mining Amine-Transaminases

Léa Gourbeyre, Egon Heuson, Franck Charmantray, Virgil Hélaine, Adrien Debard, Jean-Louis Petit, Véronique de Berardinis, and Thierry Gefflaut

Corresponding author : Thierry.Gefflaut@uca.fr

Content

1	General informations	S2
2	Synthesis of hypotaurine	S2
3	Cloning and production of histidine-tagged TA	S2
3.:	Cloning of enzymes	S2
3.2	Production and purification	\$3
4	Calibration curves with direct and coupled assays	S3
5	Construction of the amine-TA collection	S4
6	Substrate spectra of selected TA with hypotaurine as amine donor	S6
7	Thermostability study of A9CV07 from Hoeflea phototrophica	S6
8	Kinetic study of A9CV07	S6
9	Comparison of the best hits sequences	S7
10	References	S8

1. General Informations

¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer. Chemical shifts are reported in ppm (δ) relative to TMS as internal standard. Enzyme purifications by immobilized metal affinity chromatography (IMAC) were performed using Ni-NTA agarose purchased from QIAGEN. Lysogeny Broth (LB) for cell culture was purchased from DIFCO. Before enzymes purifications, cells were disrupted using a Bandelin Sonopuls sonicator. All chemicals were purchased from various commercial sources and used without further purification. Isopropyl- β -D-thiogalactoside (IPTG) used for induction was purchased from Sigma Aldrich (Merck Sigma, StLouis, USA). Bradford reagent and bovine serum albumin (BSA) used as standard were purchased from Bio-Rad. Enzyme assays were run at 25 °C in disposable 1 mL cuvettes using a UV/Vis spectrometer (Agilent CaryTM 300) or at 30 °C in Greiner® 96-well microplates using a multimode microplate reader (SafireTM II, Tecan). All kinetic measurements were performed in 50 mM potassium phosphate (KP) buffer, pH 7.5, in a total volume of 1 mL (cuvette) or 200 µL (microplate). In the latter case, an optical path of 0.59 cm was determined. Variations of optical density (OD) were recorded at 412 nm and initial rates were calculated from slopes using $\varepsilon = 14150 M^{-1} \cdot cm^{-1}$ for the thiolate anion formed from 5,5'dithiobis-(2-nitro-benzoic acid) (DTNB). One Unit (U) corresponds to the quantity of enzyme allowing the conversion of 1 µmol of substrate per minute in the specified conditions.

2. Synthesis of hypotaurine

Hypotaurine (HPT) was prepared following a modified procedure described for the synthesis of cysteine sulfinic acid.¹ To a solution of cystamine hydrochloride (10 g, 44.4 mmol) in 95% formic acid (230 mL) was added 37% hydrochloric acid (9 mL). A solution of 10 M H₂O₂ (10.7 mL, 107 mmol) was then added dropwise while maintaining the solution temperature between 15 and 25°C. The mixture was then stirred at room temperature for 16 h before concentration under reduced pressure. The residue was dissolved in water (100 mL) and the solution concentrated again under reduced pressure. This operation was repeated twice until complete removal of formic acid. The residue was then dissolved in water (22 mL) and 30% NH₃ (22 mL) was added. The mixture was then stirred at room temperature for 4 h before concentration under reduced pressure. This operation under reduced pressure. This operation was repeated twice until complete removal of NH₃. The residue was dissolved in water (100 mL) and the solution concentrated again under (100 mL) and the solution concentrated again under reduced pressure. This operation was repeated twice until complete removal of NH₃. The residue was then dissolved in water (100 mL) and pH was adjusted to 11 with 4 M NaOH. The solution was then poured on a column of Dowex[®] 50WX8 (200 mL, H⁺ form). The column was eluted with water (3 L). Ninhydrin positive fractions were pooled and concentrated under reduced pressure to afford HPT as a slightly yellow solid (5.3 g, 82%). Mp = 186 °C. ¹H NMR (400 MHz, D₂O): δ 3.22 (1H, t, *J* = 6.5 Hz, 2H), 2,51 (2H, t, *J* = 6.5 Hz, 2H). ¹³C NMR (100 MHz, D₂O): δ 55.4, 33.4. HRMS (ESI⁺) m/z: calc. for C₂H₈NO₂S: 110.0276, found: 110.0279.

3. Cloning and production of histidine-tagged TA

3.1 Cloning of enzymes

Two previously described TA (Uniprot ID: Q9A3Q9² and A0A0H3K2P4³) and four enzymes identified in the present study (Uniprot ID: A9CV07, A0KEV7, I0JL11 and Q48AP6) were cloned with a Histidine tag in N-terminal part in a pET22b(+) (Novagen) modified for ligation independent cloning as already described.⁴ All primers and strains are listed in Table S1. All the strains along with their identifiers were purchased from DSMZ or ATCC collections. When DNA samples corresponding to the gene encoding the selected enzyme was not available, PCR was performed on the DNA of another strain from the same species. Oligonucleotides (Table S1) were from Merck-Sigma Aldrich. Enzymes were over-expressed in *E. coli* BL21-CodonPlus (DE3)-RIPL cells (Agilent) and cell lysates prepared as previously described.^{5,6} After centrifugation, supernatants were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using the NuPAGE system (Invitrogen). Protein concentration was determined by the Bradford method, with bovine serum albumin as the standard (Bio-Rad). Samples of transformed cells over expressing the different enzymes were stored at -80 °C in lysogeny broth (LB) medium (3 mL) containing ampicilline (100 mg.L⁻¹) and glycerol (10 % vol.).

Uniprot KB Id.	Organism	Strain used for PCR	Primer 5'	Primer 3'
Q9A3Q9	Caulobacter vibrioides	DSMZ 4727	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATCCCG ATTTCGGCGCCAACGACCTCGA C	GTGTAATGGATAGTGATCTTAA TCGACCTGACCCAGCACCCTGC GGATCG
A0A0H3K2P4	Synechococcus sp.	ATCC 27144	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATGAAG ACAAATTGATGCTGATG	GTGTAATGGATAGTGATCTTAC TTCGCGAGTTCAGC
A9CV07	Hoeflea phototrophica	DSMZ 17068	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATAACA TGCCCATTCAATCCGGAATTC	GTGTAATGGATAGTGATCTTAG CCGAACACCCGCGTC
A0KEV7	Aeromonas hydrophila	DSMZ 30187	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATAAAC CGATCAGCGACATCAATACCCC	GTGTAATGGATAGTGATCTTAG TCCTGGGCCTGCAGGGCGTC
IOJLI1	Halobacillus halophilus	DSMZ 2266	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATACAA AAGCTGATGTGAAGAACGATC	GTGTAATGGATAGTGATCTTAC AACTGATGGAGTGCATCGAC
Q48AP6	Colwellia psychrerythraea	ATCC BAA-681	AAAGAAGGAGATAGGATCATG CATCATCACCATCACCATAACA ATAACCAAACAAAACATGGCAT C	GTGTAATGGATAGTGATCTTAC GCTATTTCGTTAAAGGTTTCGC C

Table S1. Set of transaminases cloned with a His-tag.

3.2 Production and purification

A preculture was run by adding a 3 mL stored sample of transformed cells in 100 mL LB medium containing ampicillin (100 mg.L⁻¹). After stirring (200 rpm) at 37 °C for 24 h, 5 x 4 mL preculture samples were diluted in 5 x 200 mL of LB medium containing ampicillin (100 mg.L⁻¹). The cultures were stirred (200 rpm) at 37 °C until an OD at 600 nm of 0.7 was reached. After addition of 50 mM IPTG (2 mL), the culture medium was stirred (200 rpm) at 30 °C for 24 h. Cells were harvested by centrifugation (12,000 g, 15 min), resuspended in 50 mM KP buffer, pH 8 (30 mL) and the suspension was centrifuged again (12,000 g, 15 min). This washing step was repeated 3 times. Finally, the cell pellet (typically 3-4 g of wet-cells from 1 L culture) was stored at -20 °C until enzyme purification.

For IMAC purification, cell lysates were prepared from 3 g of wet cells suspended in 50 mM KP, 0.3 M KCl, 10 mM imidazole, pH 8 (20 mL). Cells were disrupted by sonication at 0 °C for 1 h (50% amplitude, 8 s on, 15 s off) and cell debris were removed by centrifugation at 4 °C (25,000 *g*, 20 min). A solution of 10 mM pyridoxal phosphate (PLP) was added to reach a final concentration of 0.1 mM. Clarified lysates were poured onto Ni-NTA agarose (10 mL) equilibrated with 50 mM KP, 0.3 M KCl, 10 mM imidazole, pH 8. The column was washed with the same buffer containing 20 mM imidazole (100 mL) before elution of the tagged enzyme with the same buffer containing 250 mM imidazole (100 mL). Fractions were tested for protein content by adding 20 μ L aliquots to 200 μ L of Bradford reagent. Protein containing fractions were pooled. TA solutions were then dialysed at 4 °C with 50 mM KP, 0.1 mM PLP, 3M (NH₄)₂SO₄, pH 7.5 (3 x 0.5 L, 3 x 6 h). The final enzyme suspensions were stored at 4°C. Protein concentrations were determined by the Bradford assay with BSA as standard. Before use, TA suspensions were centrifuged (14,000 *g*, 5 min) and the supernatant discarded.

4. Calibration curves with direct and coupled assays

All experiments were performed in triplicate, in 96-well microplates. For direct assay, initial rates were measured with 20 mM HPT, 2 mM Pyruvate, 0.05 mM PLP, 1 mM DTNB, 1% EtOH and 0.03-7 μ g/well of purified Q9A3Q9 (3-722 nM). Results are reported in figure S1. For coupled assay, initial rates were measured using 20 mM Ala, 20 mM HPT, 2 mM 2-oxoglutaric acid, 0.1 mM PLP, 1 mM DTNB, 1% EtOH, 6.7

 μ g/well of A9CV07 (0.65 μ M) and 0.6-47 μ g/well of purified A0A0H3K2P4 (0.07-5.7 μ M). Results are reported in figure 2 of the manuscript. In both cases, LOD was calculated from the linear part of the plot of activity versus quantity of TA using the formula LOD = 3.3*Sb/m where m and Sb are the slope and standard deviation of the ordinate intercept which were both calculated according to the least square method.

Figure S1. Calibration curve with the direct assay using Q9A3Q9 as model TA.

5. Construction of the amine-TA collection

A set of 60 TA from class III, experimentally characterized or reviewed in UniprotKB database (table S2), was used for pairwise sequence similarity with the BL2 option (BLAST allowing gaps) and a BLOSUM62 scoring matrix against the UniProtKB database. Adjusments of BLAST parameters between 40% and 80% identity on 80% length were applied. Then, redundancy between retrieved proteins was eliminated by removing all sequences with 100% of homology, leading to a final selection of 15 985 proteins. Then, protein sequences were clustered (80% of identity) as previously described,⁵ and genes with 40-65% GC were chosen for facilitating cloning. In this way, a set of 889 proteins representative of these clusters for which genomic DNA was available in the Genoscope strain collection were selected, and the corresponding genes were cloned in an expression vector. Cloning of the genes , cell cultures, IPTG induction for protein production, and cell extraction were performed as reported previously.^{3,7} Based on gel electrophoresis analysis, a set of 642 genes were successfully cloned. Clones were then transformed in expressing cells BL21-CodonPlus (DE3)-RIPL cells (Agilent). The overexpression (in the induced culture) and the solubility (in the clear lysate) of the proteins were checked on an E-PAGE 8% Protein Gels (SDS-PAGE, Invitrogen). A set of 549 proteins were overexpressed and induced successfully as shown by the protein gel analysis. Notably, around 65 % were found visible on SDS gel of the cell-free extracts. Protein concentrations were determined using the Bradford method. The samples were stored at -80 °C.

UniprotKB Id	Organism	Protein name / annotation	References
A6WVC6	Ochrobactrum anthropi	Aminotransferase class-III	8,9
С3К3Т9	Pseudomonas fluorescens	Putative aminotransferase	9–11
B7IC89/A0A0D5YH21	Acinetobacter baumannii	ω -amino acid-pyruvate aminotransferase	9
C7KV78/C7JE89	Acetobacter pasteurianus	β-alanine-pyruvate transaminase	9
A4JTE9	Burkholderia vietnamiensis	Aminotransferase	12

Table S2: Reference set of 60 experimentally characterised or reviewed amine-TA used for genes selection.

Q12DH7	Polaromonas sp.	Glutamate-1-semialdehyde 2,1-	13,14
A1B956	Paracoccus denitrificans	Aminotransferase	11,15–17
F2XBU9	Vibrio fluvialis	Pyruvate transaminase	11,14,18–21
Q7NWG4	Chromobacterium violaceum	Probable aminotransferase	11,18,19,22–25
Q91700	Pseudomonas aeruginosa	β-alanine-pyruvate aminotransferase	19,24,26
Q7WWK8	Achromobacter denitrificans	ω-amino acid:pyruvate transaminase	18,19,27
Q9A3Q9	Caulobacter vibrioides	ω-amino acid-pyruvate aminotransferase	2,19,28
A3EYF7	Mesorhizobium sp.	β-transaminase	19,29,30
Q3J0Y0	Rhodobacter sphaeroides	Putative aminotransferase	19
A9CEZ4	Agrobacterium fabrum	Aminotransferase	31
A4WXQ0	Rhodobacter sphaeroides	Aminotransferase	31
Q98NJ9	Mesorhizobium japonicum	Aminotransferase	31,32
Q98L27	Mesorhizobium japonicum	Probable aminotransferase	31,32
Q98K53	Mesorhizobium japonicum	β-alanine-pyruvate transaminase	31,32
Q98AI4	Mesorhizobium japonicum	Probable aminotransferase	31,32
Q98AI1	Mesorhizobium japonicum	Aminotransferase	31,32
Q98A92	Mesorhizobium japonicum	Aminotransferase	31,32
Q987Q5	Mesorhizobium japonicum	Probable aminotransferase	31,32
Q98716	Mesorhizobium japonicum	Family II aminotransferase	31,32
Q987B2	Mesorhizobium japonicum	Putative aminotransferase	31,32
Q98FQ6	Mesorhizobium japonicum	Aminotransferase	32
Q9AGD3	Rhizobium leguminosarum	4-aminobutyrate aminotransferase	32,33
A1B9Z3	Paracoccus denitrificans	(Hypo)taurine-pyruvate aminotransferase	34
Q976K0	Sulfurisphaera tokodaii	Acetylornithine/acetyl-lysine aminotransferase	35
H8WR05	Variovorax paradoxus	β-phenylalanine transaminase	28,36
Q9APM5	Bilophila wadsworthia	Taurine-pyruvate aminotransferase	37
P28269	Pseudomonas putida	ω -amino acid-pyruvate aminotransferase	28,38–40
U2H8Z1	Sphingobacterium paucimobilis	lysine aminotransferase	41,42
Q01767	Streptomyces clavuligerus	L-lysine-e-aminotransferase	43
Q9EVJ7	Flavobacterium lutescens	L-lysine 6-aminotransferase	44
P12995	Escherichia coli	Adenosylmethionine-8-amino-7- oxononanoate aminotransferase	45
P9WQ77	Mycobacterium tuberculosis	Probable L-lysine-ε-aminotransferase	46
Q5SHH5	Thermus thermophilus	Acetylornithine/acetyl-lysine aminotransferase	47
P22256	Escherichia coli	4-aminobutyrate aminotransferase	48,49
L7ZI44/A0A0J9X1Q5	Serratia sp.	Aminotransferase PigE	50
Q5LMU1	Ruegeria pomeroyi	Aminotransferase, class III	38,39
P40732	Salmonella typhimurium	Acetylornithine/succinyldiaminopimelate aminotransferase	47
Q3IWE9	Rhodobacter sphaeroides	Adenosylmethionine-8-amino-7- oxononanoate aminotransferase	38,39,51
Q1GD43	Ruegeria sp.	Aminotransferase	38,39
Q9HV04	Pseudomonas aeruginosa	Probable class III aminotransferase	16
P18335	Escherichia coli	Acetylornithine/succinyldiaminopimelate	52

		aminotransferase	
Q07907	Geobacillus stearothermophilus	Acetylornithine aminotransferase	
P9WQ81	Mycobacterium tuberculosis	Adenosylmethionine-8-amino-7- oxononanoate aminotransferase	53
P53555	Bacillus subtilis	L-Lysine8-amino-7-oxononanoate transaminase	53
Q4H4F5	Bacillus circulans	Neamine transaminase	54
P56744	Acinetobacter baumannii	Diaminobutyrate-2-oxoglutarate aminotransferase	55
052250	Halomonas elongata	Diaminobutyrate2-oxoglutarate transaminase	56
D2D3B2	Sphingopyxis macrogoltabida	Aminopentol aminotransferase	57
Q8NT73	Corynebacterium glutamicum	Glutamate-1-semialdehyde 2,1- aminomutase	58
B0VH76	Cloacamonas acidaminovorans	3-aminobutyryl-CoA aminotransferase	59
Q53U08	Streptomyces fradiae	Neamine transaminase	54
P42588	Escherichia coli	Putrescine aminotransferase	60
Q6L741	Streptomyces kanamyceticus	2'-deamino-2'-hydroxyneamine transaminase	61
P50457	Escherichia coli	4-aminobutyrate aminotransferase	62
P46395	Corynebacterium glutamicum	Adenosylmethionine-8-amino-7- oxononanoate aminotransferase	58

6. Substrate spectra of selected TA with hypotaurine as amine donor.

Substrate spectra of 4 purified TA (Uniprot ID: A9CV07, A0KEV7, IOJ1L1 and Q48AP6) was explored using hypotaurine as amine donor. All experiments were performed in triplicate in 96-well microplates. Initial rates were measured using the direct assay with 20 mM HPT, 2 mM acceptor, 0.1 mM PLP, 1 mM DTNB, 5% DMSO and 1-80 μ g/well of purified TA adjusted to measure an activity within the calibration range. TA activity in the well was calculated using the following equation: Act (U/well) = ((dOD/dt) / (14150*0.59)*200). Results are reported in table 2 of the manuscript.

7. Thermostability study of A9CV07 from Hoeflea phototrophica

All experiments were performed in triplicate in 96-well microplates. A solution of 2.4 mg.mL⁻¹ of A9CV07 (0.2 mL) in 50 mM KP buffer (pH 7.5) was incubated for 100 h at 30 or 40 °C. At regular time intervals, a 10 μ L aliquot was added to 90 μ L buffer and 10 μ L of the diluted solution was used for TA activity measurement using the direct assay with 20 mM HPT, 2 mM Pyr, 0.1 mM PLP, 1 mM DTNB. TA activity in the well was calculated using the following equation: Act (U/well) = ((dOD/dt) / (14150*0.59)*200). Results are reported in figure S2.

Figure S2. Thermostability of A9CV07.

8. Kinetic study of A9CV07

All measurements were done in triplicate in 96-well microplates at 30 °C using the direct assay with 1 mM DTNB, 0.1 mM PLP, 45 nM (2.35 μ g.mL⁻¹) of purified A9CV07 and variable concentrations of HPT and Pyr. Apparent Km relative to Pyr (Km_{Pyr}) was determined using 20 mM HPT and 0.1-5 mM Pyr. Apparent Km relative to HPT (Km_{HPT}) was determined using 2 mM Pyr and 1-50 mM HPT. Kinetic parameters values and standard errors were calculated from the Hanes-Woolf plot ((S)/vi = $1/k_{cat}(E)*1/(S) + Km/k_{cat}(E)$) according to the least-squares method and Gauss's error propagation law: $Km_{HPT} = 22.0 \pm 1.2 \text{ mM}$, $Km_{Pyr} = 0.25 \pm 0.03 \text{ mM}$, $k_{cat} = 181 \pm 7 \text{ min}^{-1}$ (value determined with variable HPT concentration). Experimental plots are presented in figure S3.

Figure S3. Hanes-Woolf plots of A9CV07 activity at variable substrate concentrations measured with the direct assay. A: variable [Pyr] and fixed 20 mM HPT; B: variable [HPT] and fixed 2 mM Pyr.

9. Comparison of the best hits sequences.

Figure S4 presents the identity matrix including the 20 best hits detected with each substrate, whereas figure S5 compiles the screening results including the 20 best hits with each couple of substrate, supplemented with hits displaying an activity above 0.2 mU/well. The Philogenetic tree was constructed using iTOL.

	MU7	(GV2	00	7Q7	3AP6	7WV7	5R2	X56	66H)	57S3	F42	(EV7	VL1	1C1	CF07	YL2	0Z4	MV2	-	.V07	2Z6	3M75	IW8	B31	MXW4	105	212	9D2	202	NBK4		0Z6	HSN3	167	(QL1	VK1	9D0	(8H0	642	0N2	K03	DZF6	R37	58S3	SVS9	GL6		1961	ITU7	8A4
	4	<u>4</u>	-OS	32T	348	247	12	ð	31K	440	32 T	AOK	E1S	AOP	64	22	8 Q		5	64		5	43S	49E	77	868 198	λ Υ			44 A		Z 68	14	43S	AQK	E1S	AOP	4 3K	80	391	76	49D	32JI	8	B	CGL	48F	H6C	714	35
D4YMU7	100	24	24	22	22	20	21	20	22	21	22	22	23	22	22	23	20	18 :	.9	18	22	25	19	19	22	21 1	.9	20 2	23 2	21 19	9 2:	1 18	20	21	21	19	23	24	23	22	26	29	29	22	22	24	22	24	28 1	26
D4XGV2	24	100	43	46	42	44	45	46	48	49	50	50	50	51	49	50	31	32 3	0	26	27	32	30	28	31	33 3	30	29 3	32 3	33 32	2 3	6 34	32	33	34	33	33	33	32	36	26	28	30	30	29	30	30 3	29 1	29 🚦	32
F0SJ00	24	43	100	51	46	47	49	50	51	49	51	51	53	54	51	50	35	34 3	1	29	28	32	33	32	33	31 3	31 3	31 3	33 3	35 33	3 33	2 33	36	34	37	36	32	34	35	37	27	27	30	27	29	28	30	30	33 3	32
G2T7Q7	22	46	51	100	63	65	67	54	54	51	55	58	55	55	52	56	31	80 3	0	27	26	34	29	27	31	31 3	30	29 3	33 3	35 31	1 30	6 31	33	35	35	33	33	34	34	34	26	28	28	27	27	28	28	27	31 3	30
Q48AP6	22	42	46	63	100	69	70	52	50	47	50	53	49	53	50	50	34	29 3	1	25	26	29	29	26	32	27 2	27	30 3	30 3	33 33	3 32	2 31	32	33	34	33	30	31	33	31	24	26	25	27	26	26	25	26	28 2	28
Q47WV7	20	44	47	65	69	100	78	54	54	50	51	54	52	54	52	51	32	29 2	.8	25	26	30	29	29	30	27 2	27	29 3	33 3	32 32	2 3	3 31	32	33	34	34	31	34	33	32	25	26	26	27	25	26	25 2	26	29 3	31
E1V5R2	21	45	49	67	70	78	100	54	55	50	50	55	54	54	51	52	31	29 3	0	26	26	32	30	30	32	30 2	29	33 3	34 3	36 34	4 30	6 33	34	37	37	36	32	33	36	36	27	29	29	27	27	28	28 2	27 3	30 3	31
	20	46	50	54	52	54	54	100	58	61	63	61	60	60	60	61	35	35 3	4	29 .	28	30	30	28	33	31 2	.9	30 3	33 3	36 33	3 3. D 24	2 32	35	34	36	36	34	34	35	38	27	27	29	27	27	27	28 4	2/ :	31 3	30
DIKH99	22	48	10	54	50	54	55	58	100	57	60	62	62	60	02 E 0	62	32	51 3 51 3	1	28 .	29	31	30	28	34 21	32 3	51 ·	32 3 20 3	02 3 05 3	54 33 57 31	5 51 D DI	D 33	34	35	30	34	34 22	33	33	30	25	27	28	28	31	29	31 :	30 3	33 3 2E	32
R2TF42	21	50	51	55	50	51	50	63	60	61	100	66	62	65	64	61	34	12 :	1	26	20	30	30	23	31	37 3	in 1	30 3	13 3	3/ 3/	2 J. 1 3/	J J4 1 37	34	32	36	35	33	34	32	36	2/	20	28	20	29	20	20 2	27	31	32
AOKEV7	22	50	51	58	53	54	55	61	62	63	66	100	73	67	65	66	34	33 3	2	29	28	33	31	29	34	32 3	31	34 3	15 3	37 34	4 30	6 35	35	34	37	35	33	33	34	38	26	28	30	26	29	29	28	27	32	32
E1SVL1	23	50	53	55	49	52	54	60	62	62	62	73	100	65	64	68	33	33 3	2	29	29	34	30	29	35	32 3	31	33 3	37 3	38 33	3 30	6 34	36	34	36	35	33	35	37	37	26	28	29	27	29	28	28	28	32 1	32
A0P1C1	22	51	54	55	53	54	54	60	60	61	65	67	65	100	71	67	33	32 3	3	28	28	33	32	31	33	30 3	32	33 3	16 3	38 33	3 34	4 35	34	34	37	37	33	35	35	36	26	28	29	28	29	29	31	30	31 1	30
A9CF07	22	49	51	52	50	52	51	60	62	58	64	65	64	71	100	75	33	32 3	2	29	29	33	33	32	33	32 3	32	34 3	5 3	37 32	2 34	4 33	35	34	36	35	33	34	35	37	28	30	31	27	28	28	28 :	28	30 1	30
Q2JYL2	23	50	50	56	50	51	52	61	62	61	61	66	68	67	75 1	100	33	33 3	3	29	30	34	33	32	34	33 3	32	34 3	37 3	39 32	2 3	7 35	37	36	38	38	34	34	35	37	29	32	31	26	30	29	29	29	32 3	31
L8Q0Z4	20	31	35	31	34	32	31	35	32	33	34	34	33	33	33	33	100	57 6	6	40	41	35	35	35	35	33 3	33	33 3	32 3	33 34	4 34	4 33	35	34	35	36	37	34	41	40	27	29	30	27	30	28	31	29	34 3	30
A4IMV2	18	32	34	30	29	29	29	35	31	31	33	33	33	32	32	33	67 1	00 6	68	39	40	33	37	34	36	34 3	33	36 3	34 3	33 36	5 3	5 32	36	36	35	36	37	34	40	39	26	30	28	27	31	29	31 3	31	34 3	32
IOJLI1	19	30	31	30	31	28	30	34	30	31	31	32	32	33	32	33	66	58 1	00	38 ·	42	32	33	34	36	31 3	30	32 3	31 3	33 33	3 33	2 32	34	35	34	33	35	31	36	35	26	29	26	25	30	27	29	28	30 2	28
A9CV07	18	26	29	27	25	25	26	29	28	27	26	29	29	28	29	29	40	39 3	8 1	LOO .	57	31	33	31	30	29 3	33	31 2	29 3	31 34	4 34	4 31	35	29	30	30	32	32	36	34	22	23	24	24	26	25	26	26	30 2	27
B8J226	22	27	28	26	26	26	26	28	29	28	28	28	29	28	29	30	41	10 4	2	57 1	.00	34	36	34	33	35 3	34	31 3	81 3	32 35	5 33	3 31	32	32	33	33	33	32	36	37	22	28	24	27	30	29	28 2	27 3	31 2	28
Q13IVI75	25	32	32	34	29	30	32	30	31	32	30	33	34	33	33	34	35	33 3	12	31	34	100	35	35	32	32 3	36 .	32 3	5 3	35 32	2 3	/ 31	34	34	36	32	36	36	39	35	28	33	29	31	31	34	32 :	32 :	34 3	33
A9FR31	19	30	33	29	29	29	30	30	30	32	30	20	30	32	33	33	25	57 : 24 :	14	33 . 21 ·	30 24	35	67	100	39 40	42 4	14 .	30 3 25 2	16 3	1 30	5 4. 7 //	1 38	20	38 29	41	29	34 22	32	38	35	24	20	27	20	29	30	28 2	27	29 2	20
01MXW4	22	20	32	27	32	30	30	20	3/	2.5	20	2.5	35	33	32	34	35	26 3	16	30	22	32	39	40 1		40 - 17 /	ыл . 14	30 3	17 3	18 20		0 37	40	30	30	38	36	33	37	34	22	28	25	23	26	26	28	25	29	26
B9R1U5	21	33	31	31	27	27	30	31	32	31	32	32	32	30	32	33	33	34	1	29	35	32	42	40	42 1	100 5	1	37 4	10 3	37 32	2 30	9 35	37	39	36	35	34	35	36	33	23	27	27	26	26	26	26	24	27	24
B9K5I2	19	30	31	30	27	27	29	29	31	33	30	31	31	32	32	32	33	33 3	0	33	34	36	44	43	44	51 1	00	35 3	8 3	38 35	5 3	8 38	40	38	37	37	39	35	40	36	25	28	28	26	29	32	31	30	25 1	23
E1V9D2	20	29	31	29	30	29	33	30	32	30	31	34	33	33	34	34	33	36 3	2	31	31	32	36	35	39	37 3	85 1	100 3	88 4	10 38	8 3	7 36	36	39	40	38	35	32	39	37	22	27	27	24	25	27	26	25	27 1	23
A0NZD8	23	32	33	33	30	33	34	33	32	35	33	35	37	36	35	37	32	34 3	1	29	31	35	37	36	37	40 3	88	38 1	00 3	38 35	5 38	8 36	38	42	42	41	35	35	38	36	26	29	34	24	27	28	26	26	28 7	28
A4ABK4	21	33	35	35	33	32	36	36	34	37	34	37	38	38	37	39	33	33 3	3	31	32	35	41	39	38	37 3	88	40 3	88 1	00 44	4 49	9 46	46	49	52	51	33	34	39	32	26	27	29	31	31	31	29	30 3	29 7	28
C6XP14	19	32	33	31	33	32	34	33	33	32	30	34	33	33	32	32	34	86 3	3	34	35	32	38	40	39	32 3	35	38 3	35 4	14 10	0 4	6 53	48	51	50	47	34	31	41	35	22	25	26	26	30	27	27 1	27	28 2	27
B9JUL0	21	36	32	36	32	33	36	32	36	35	34	36	36	34	34	37	34	35 3	12	34	33	37	41	40	40	39 3	38	37 3	88 4	49 46	5 10	00 52	49	53	54	54	37	35	43	33	23	27	26	27	28	29	27 2	26	31 2	26
B92026	18	34	33	31	31	31	33	32	33	34	32	35	34	35	33	35	33	32 3	2	31	31	31	38	37	37	35 3	38 :	36 3	36 4	16 53	3 5	2 100	50	52	57	55	33	33	38	34	20	27	25	25	27	27	28 2	28 2	27 2	27
A/HSIN3	20	32	36	33	32	32	34	35	34	36	34	35	36	34	35	37	35	36 3	4	35 .	32	34	40	39	40	3/ 4	10 . No .	36 3	18 4	16 48	5 49	9 50	100	54	56	54	35	33	42	35	23	28	27	28	29	28	30 4	29	28 2	26
	21	33 24	34	35	33 24	33	37	34	35	20	32	34	34	34 27	34 26	30	25	50 3 25 3		29	32 22	34	38	38	20 29	39 3	58 . 27 .	39 4 40 4	12 4	19 51	1 5: 1 5:	3 52	56	61	100	58 72	35	35	39	30 27	22	28	28	20	28	29	30 4	28 3	30 2 70 ·	27
F1SVK1	19	34	36	33	23	34	36	36	34	30	37	35	35	37	35	38	36	86 3	13	30	33	32	41	38	38	35 3	27	38 /	11 5	51 /17	7 5/	4 55	54	58	72	100	34	35	40	36	24	20	26	25	28	26	23 2	26	26	26
A0P0G6	23	33	32	33	30	31	32	34	34	33	31	33	33	33	33	34	37	37 3	15	32	33	36	34	33	36	34 3	39	35 3	5 3	33 34	4 3	7 33	35	35	35	34	100	49	40	36	28	30	29	28	32	30	29	30	31	31
A3K8H0	24	33	34	34	31	34	33	34	33	32	34	33	35	35	34	34	34	34 3	1	32	32	36	32	33	32	35 3	35	32 3	15 3	34 31	1 3	5 33	33	33	36	35	49	100	39	34	27	30	28	27	29	28	30	30	31 3	29
B8G642	23	32	35	34	33	33	36	35	33	33	32	34	37	35	35	35	41	10 3	6	36	36	39	38	37	37	36 4	10	39 3	88 3	39 41	1 43	3 38	42	39	43	40	40	39	100	44	25	32	30	28	30	28	29 :	29	34 :	29
B9L0N2	22	36	37	34	31	32	36	38	36	37	36	38	37	36	37	37	40	89 3	5	34	37	35	35	33	34	33 3	36	37 3	6 3	32 35	5 33	3 34	35	36	37	36	36	34	44	100	27	33	34	27	32	30	31	30 1	33 1	29
J7GK03	26	26	27	26	24	25	27	27	25	27	24	26	26	26	28	29	27	26 2	6	22	22	28	24	25	22	23 2	25	22 2	26 2	26 22	2 23	3 20	23	22	24	23	28	27	25	27	100	47	46	28	30	28	30 1	29	31 7	29
A9DZF6	29	28	27	28	26	26	29	27	27	28	27	28	28	28	30	32	29	30 2	9	23	28	33	26	28	28	27 2	28	27 2	29 2	27 25	5 2	7 27	28	28	28	27	30	30	32	33	47	100	58	29	30	31	33	33	34 3	30
B2JR37	29	30	30	28	25	26	29	29	28	30	28	30	29	29	31	31	30	28 2	6	24	24	29	27	27	25	27 2	28	27 3	34 2	29 26	5 20	6 25	27	28	28	26	29	28	30	34	46	58	100	32	33	34	36	36	36 3	32
C4G8S3	22	30	27	27	27	27	27	27	28	26	26	26	27	28	27	26	27	27 2	25	24	27	31	26	25	23	26 2	26	24 2	24 3	31 26	5 2	7 25	28	26	29	26	28	27	28	27	28	29	32	100	53	55	52 5	51 3	37 3	33
COBA2A	22	29	29	27	26	25	27	27	31	29	29	29	29	29	28	30	30	31 3	0	26	30	31	29	27	26	26 2	29	25 2	27 3	31 30) 2	8 27	29	28	30	28	32	29	30	32	30	30	33	53	100	59	53 5	58 3	39 3	35
	24	30	28	28	26	26	28	27	29	28	27	29	28	29	28	29	28	9 i 21 ·	./	25	29	34	30	28	20	20 3	21	2/ 2	6 3	27	7 2	9 27 7 29	28	29	28	26	30	28	28	30	28	31	34	55	59	100	100	54 3 72	35 3 27	35
D9R961	24	29	30	20	25	25	20	20	30	20	27	20	20	30	28	29	29	81	8	26	27	32	20	26	25	20 3	30	25 2	6 3	30 27	7 2	6 28	20	28	29	26	30	30	29	30	29	33	36	51	58	64	72 1	100	39	37
A1HTU7	28	29	33	31	28	29	30	31	33	35	31	32	32	31	30	32	34	34	0	30	31	34	29	27	29	27 2	25	27 2	18 2	29 28	3 3	1 27	28	30	29	26	31	31	34	33	31	34	36	37	39	35	37	39 1	00	53
B5Y8A4	26	32	32	30	28	31	31	30	32	32	32	32	32	30	30	31	30	32 2	8	27	28	33	26	26	26	24 2	23	23 2	28 2	28 27	7 20	6 27	26	27	28	26	31	29	29	29	29	30	32	33	35	35	35	37	53 1	100

Figure S4. Identity matrix of selected hits from tables 1 and 3.

Figure S5. Compilation of selected screening results.

TA indicated in red correspond to homologous enzymes from the reference set. For each hit the closest enzyme from the reference set is indicated with identity/homology within brackets.

10. References

- 1 R. Emilliozzi and L. Pichat, Bull. Soc. Chim. Fr., 1959, 1887–1888.
- 2 B.-Y. Hwang, S.-H. Ko, H.-Y. Park, J.-H. Seo, B.-S. Lee and B.-G. Kim, J. Microbiol. Biotechnol., 2008, 18, 48–54.
- 3 E. Heuson, J.-L. Petit, A. Debard, A. Job, F. Charmantray, V. de Berardinis and T. Gefflaut, *Appl. Microbiol. Biotechnol.*, 2016, **100**, 397–408.
- 4 K. Bastard, A. A. T. Smith, C. Vergne-Vaxelaire, A. Perret, A. Zaparucha, R. De Melo-Minardi, A. Mariage, M. Boutard, A. Debard, C. Lechaplais, C. Pelle, V. Pellouin, N. Perchat, J.-L. Petit, A. Kreimeyer, C. Medigue, J. Weissenbach, F. Artiguenave, V. De Berardinis, D. Vallenet and M. Salanoubat, *Nat. Chem. Biol.*, 2014, **10**, 42–49.
- 5 C. Vergne-Vaxelaire, F. Bordier, A. Fossey, M. Besnard-Gonnet, A. Debard, A. Mariage, V. Pellouin, A. Perret, J.-L. Petit, M. Stam, M. Salanoubat, J. Weissenbach, V. De Berardinis and A. Zaparucha, *Adv. Synth. Catal.*, 2013, **355**, 1763–1779.
- 6 V. de Berardinis, C. Guérard-Hélaine, E. Darii, K. Bastard, V. Hélaine, M. Stam, A. Mariage, J.-L. Petit, N. Poupard, I. Sanchez-Moreno, T. Gefflaut, M. Salanoubat and M. Lemaire, *Green Chem.*, 2017, 19, 519.
- 7 A. Kreimeyer, A. Perret, C. Lechaplais, D. Vallenet, C. Medigue, M. Salanoubat and J. Weissenbach, *J. Biol. Chem.*, 2006, **282**, 7191–7197.
- 8 M. S. Malik, E.-S. Park and J.-S. Shin, Green Chem., 2012, 14, 2137–2140.
- 9 E.-S. Park, M. Kim and J.-S. Shin, Appl. Microbiol. Biotechnol., 2012, 93, 2425-2435.
- 10N. Ito, S. Kawano, J. Hasegawa and Y. Yasohara, *Biosci. Biotechnol. Biochem.*, 2011, **75**, 2093–2098.
- 11 D. Pressnitz, C. S. Fuchs, J. H. Sattler, T. Knaus, P. Macheroux, F. G. Mutti and W. Kroutil, ACS Catal., 2013, 3, 555–559.
- 12J. Jiang, X. Chen, J. Feng, Q. Wu and D. Zhu, J. Mol. Catal. B Enzym., 2014, 100, 32-39.
- 13H.-S. Bea, H.-J. Park, S.-H. Lee and H. Yun, Chem. Commun., 2011, 47, 5894–5896.
- 14G. Shin, S. Mathew, M. Shon, B.-G. Kim and H. Yun, Chem. Commun., 2013, 49, 8629-8631.
- 15E. Park, M. Kim and J.-S. Shin, Adv. Synth. Catal., 2010, 352, 3391-3398.
- 16K. Fesko, K. Steiner, R. Breinbauer, H. Schwab, M. Schürmann and G. A. Strohmeier, J. Mol. Catal. B Enzym., 2013, 96, 103–110.
- 17C. Rausch, A. Lerchner, A. Schiefner and A. Skerra, *Proteins Struct. Funct. Bioinforma.*, 2013, **81**, 774–787.
- 18D. Koszelewski, M. Göritzer, D. Clay, B. Seisser and W. Kroutil, ChemCatChem, 2010, 2, 73-77.
- 19D. Koszelewski, K. Tauber, K. Faber and W. Kroutil, Trends Biotechnol., 2010, 28, 324–332.
- 20J.-S. Shin and B.-G. Kim, Biotechnol. Bioeng., 1999, 65, 206-211.
- 21 J.-S. Shin, H. Yun, J.-W. Jang, I. Park and B.-G. Kim, *Appl. Microbiol. Biotechnol.*, 2003, **61**, 463–471.
- 22M. S. Humble, K. E. Cassimjee, V. Abedi, H.-J. Federsel and P. Berglund, *Chemcatchem*, 2012, 4, 1167–1172.
- 23 M. S. Humble, K. E. Cassimjee, M. Håkansson, Y. R. Kimbung, B. Walse, V. Abedi, H.-J. Federsel, P. Berglund and D. T. Logan, *FEBS J.*, 2012, **279**, 779–792.
- 24C. Sayer, M. N. Isupov, A. Westlake and J. A. Littlechild, *Acta Crystallogr. Sect. D:Struct. Biol.*, 2013, **69**, 564–576.
- 25U. Kaulmann, K. Smithies, M. E. B. Smith, H. C. Hailes and J. M. Ward, *Enzyme Microb. Technol.*, 2007, **41**, 628–637.
- 26C. U. Ingram, M. Bommer, M. E. B. Smith, P. A. Dalby, J. M. Ward, H. C. Hailes and G. J. Lye, *Biotechnol. Bioeng.*, 2007, **96**, 559–569.
- 27 H. Yun, S. Lim, B.-K. Cho and B.-G. Kim, Appl. Environ. Microbiol., 2004, 70, 2529–2534.

- 28 J. Rudat, B. R. Brucher and C. Syldatk, AMB Express, 2012, 2, 11.
- 29K. Juhan, D. Kyung, H. Yun, B.-K. Cho and B.-G. Kim, J. Microbiol. Biotechnol., 2006, 16, 1832–1836.
- 30J. Kim, D. Kyung, H. Yun, B.-K. Cho, J.-H. Seo, M. Cha and B.-G. Kim, *Appl. Environ. Microbiol.*, 2007, **73**, 1772–1782.
- 31 Y.-C. Kwon, K.-H. Lee, H.-C. Kim, K. Han, J.-H. Seo, B.-G. Kim and D.-M. Kim, *Appl. Environ. Microbiol.*, 2010, **76**, 6295–6298.
- 32J.-H. Seo, J.-Y. Hwang, S.-H. Seo, H. Kang, B.-Y. Hwang and B.-G. Kim, *Biosci. Biotechnol. Biochem.*, 2012, **76**, 1308–1314.
- 33 J. Prell, B. Boesten, P. Poole and U. B. Priefer, Microbiology, 2002, 148, 615-623.
- 34A.-K. Felux, K. Denger, M. Weiss, A. M. Cook and D. Schleheck, J. Bacteriol., 2013, 195, 2921– 2930.
- 35 T. Sawai, D. Koma, R. Hara, K. Kino and S. Harayama, J. Microbiol. Methods, 2007, 71, 32-38.
- 36C. G. Crismaru, G. G. Wybenga, W. Szymanski, H. J. Wijma, B. Wu, S. Bartsch, S. de Wildeman, G. J. Poelarends, B. L. Feringa, B. W. Dijkstra and D. B. Janssen, *Appl. Environ. Microbiol.*, 2013, **79**, 185–195.
- 37H. Laue and A. M. Cook, Eur. J. Biochem., 2000, 267, 6841-6848.
- 38F. Steffen-Munsberg, C. Vickers, A. Thontowi, S. Schätzle, T. Tumlirsch, M. Svedendahl Humble, H. Land, P. Berglund, U. T. Bornscheuer and M. Höhne, *ChemCatChem*, 2013, 5, 150– 153.
- 39F. Steffen-Munsberg, C. Vickers, A. Thontowi, S. Schätzle, T. Meinhardt, M. Svedendahl Humble, H. Land, P. Berglund, U. T. Bornscheuer and M. Höhne, *ChemCatChem*, 2013, 5, 154– 157.
- 40N. Watanabe, K. Sakabe, N. Sakabe, T. Higashi, K. Sasaki, S. Aibara, Y. Morita, K. Yonaha, S. Toyama and H. Fukutani, *J. Biochem. (Tokyo)*, 1989, **105**, 1–3.
- 41 R. L. Hanson, R. M. Johnston, S. L. Goldberg, W. L. Parker and R. N. Patel, *Enzyme Microb. Technol.*, 2011, **48**, 445–453.
- 42 R. N. Patel, A. Banerjee, V. B. Nanduri, S. L. Goldberg, R. M. Johnston, R. L. Hanson, C. G. McNamee, D. B. Brzozowski, T. P. Tully, R. Y. Ko, T. L. LaPorte, D. L. Cazzulino, S. Swaminathan, C.-K. Chen, L. W. Parker and J. J. Venit, *Enzyme Microb. Technol.*, 2000, 27, 376–389.
- 43 M.-L. Wu, J.-H. Chen, C.-T. Ho and T.-C. Huang, J. Agric. Food Chem., 2007, 55, 1767–1772.
- 44 T. Fujii, M. Mukaihara, H. Agematu and H. Tsunekawa, *Biosci. Biotechnol. Biochem.*, 2002, 66, 622–627.
- 45H. Käck, J. Sandmark, K. Gibson, G. Schneider and Y. Lindqvist, J. Mol. Biol., 1999, 291, 857– 876.
- 46S. Mani Tripathi and R. Ramachandran, J. Mol. Biol., 2006, 362, 877-886.
- 47 V. Rajaram, P. R. Prasuna, H. S. Savithri and M. R. N. Murthy, *Proteins: Struct., Funct., Bioinf.*, 2008, **70**, 429–441.
- 48W. Liu, P. E. Peterson, J. A. Langston, X. Jin, X. Zhou, A. J. Fisher and M. D. Toney, *Biochemistry*, 2005, 44, 2982–2992.
- 49K. Bartsch, R. Dichmann, P. Schmitt, E. Uhlmann and A. Schulz, *Appl. Environ. Microbiol.*, 1990, 56, 7–12.
- 50X. Lou, T. Ran, N. Han, Y. Gao, J. He, L. Tang, D. Xu and W. Wang, *Biochem. Biophys. Res. Commun.*, 2014, **447**, 178–183.
- 51 S. Schätzle, M. Höhne, K. Robins and U. T. Bornscheuer, Anal. Chem., 2010, 82, 2082–2086.
- 52 R. Ledwidge and J. S. Blanchard, *Biochemistry*, 1999, **38**, 3019–3024.
- 53 S. Dey, J. M. Lane, R. E. Lee, E. J. Rubin and J. C. Sacchettini, *Biochemistry*, 2010, **49**, 6746–6760.

- 54F. Huang, D. Spiteller, N. A. Koorbanally, Y. Li, N. M. Llewellyn and J. B. Spencer, *ChemBioChem*, 2007, **8**, 283–288.
- 55H. Ikai and S. Yamamoto, J. Bacteriol., 1997, 179, 5118-5125.
- 56H. Ono, K. Sawada, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano and Y. Murooka, *J. Bacteriol.*, 1999, **181**, 91–99.
- 57D. Hartinger, H. Schwartz, C. Hametner, G. Schatzmayr, D. Haltrich and W.-D. Moll, *Appl. Microbiol. Biotechnol.*, 2011, **91**, 757–768.
- 58J. Kalinowski, B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hartmann, K. Huthmacher, R. Krämer, B. Linke, A. C. McHardy, F. Meyer, B. Möckel, W. Pfefferle, A. Pühler, D. A. Rey, C. Rückert, O. Rupp, H. Sahm, V. F. Wendisch, I. Wiegräbe and A. Tauch, *J. Biotechnol.*, 2003, **104**, 5–25.
- 59 A. Perret, C. Lechaplais, S. Tricot, N. Perchat, C. Vergne, C. Pellé, K. Bastard, A. Kreimeyer, D. Vallenet, A. Zaparucha, J. Weissenbach and M. Salanoubat, *PLOS ONE*, 2011, **6**, e22918.
- 60N. N. Samsonova, S. V. Smirnov, I. B. Altman and L. R. Ptitsyn, BMC Microbiol., 2003, 3, 2.
- 61 J. W. Park, S. R. Park, K. K. Nepal, A. R. Han, Y. H. Ban, Y. J. Yoo, E. J. Kim, E. M. Kim, D. Kim, J. K. Sohng and Y. J. Yoon, *Nat. Chem. Biol.*, 2011, 7, 843–852.
- 62 S. Kurihara, S. Oda, K. Kato, H. G. Kim, T. Koyanagi, H. Kumagai and H. Suzuki, *J. Biol. Chem.*, 2005, **280**, 4602–4608.