Surface Oxygen Species Essential for the Catalytic Activity of

Ce-M-Sn (M = Mn, or Fe) in Soot Oxidation

Meng Wang ^{a, d}, Yan Zhang ^{a, b, *}, Yunbo Yu ^{a, c, d}, Wenpo Shan ^{a, b} Hong He ^{a, c, d}

^a Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

^b Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China

 $^{\rm c}$ State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center

for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^d University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding Author: Yan Zhang (E-mail: yzhang3@iue.ac.cn)

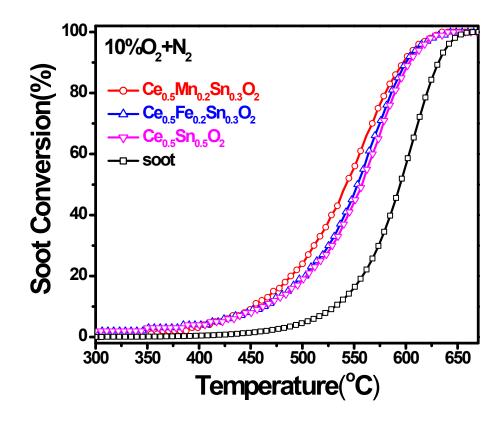
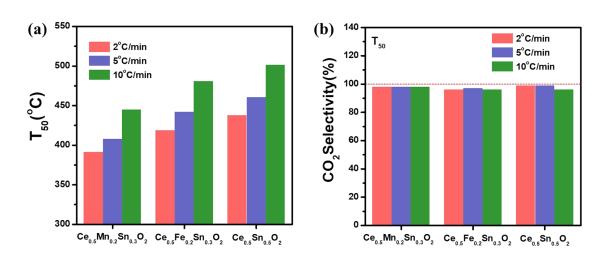



Figure S1. Soot conversion of the as-prepared catalysts during the temperature-programmed

oxidation. Reaction conditions: 10% O_2 balanced by N_2 , GHSV 300,000 ml·g⁻¹·h⁻¹ (heating rate =

10 °C/min).

Figure S2. Soot conversion of the as-prepared catalysts during temperature-programmed

oxidation under the different heating rare. Reaction conditions: 0.1% NO and 10% O_2 balanced

by N₂, GHSV 300,000 ml·g⁻¹·h⁻¹.

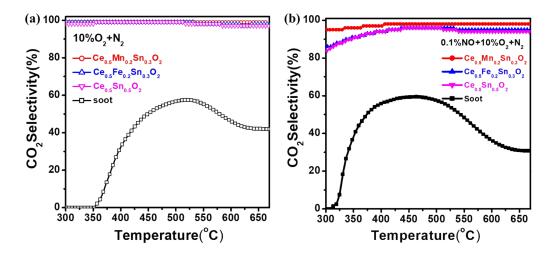
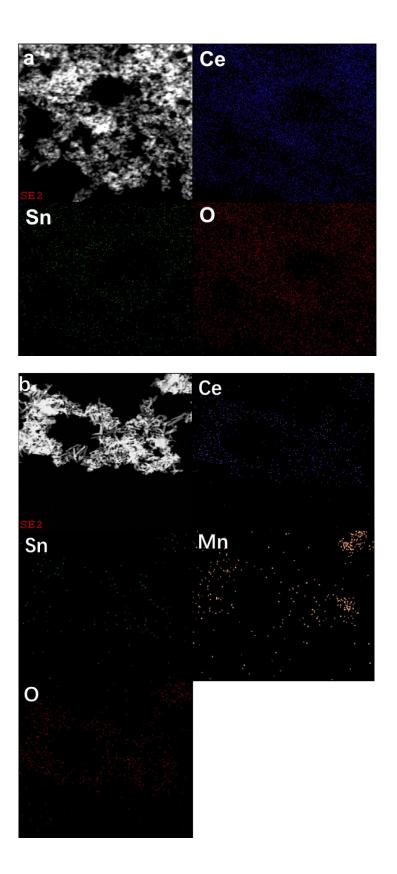



Figure S3. CO_2 selectivity of the as-prepared catalysts during the temperature-programmed

oxidation in different reactant gas, GHSV 300,000 ml·g⁻¹·h⁻¹ (heating rate=10°C/min). (a) 10% O_2

balanced by N_2 , **(b)** 0.1% NO and 10% O_2 balanced by N_2 .

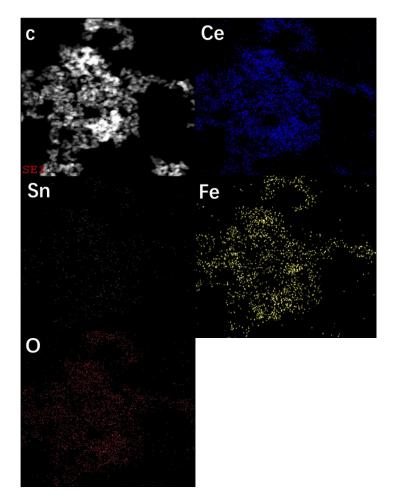


Figure S4. Element mapping results from EDS of (a) $Ce_{0.5}Sn_{0.5}O_2$ (b) $Ce_{0.5}Mn_{0.2}Sn_{0.3}O_2$ (c)

 $Ce_{0.5}Fe_{0.2}Sn_{0.3}O_2$

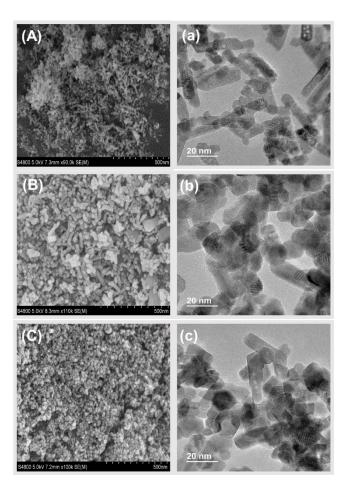


Figure S5. SEM images of the (A) Ce_{0.5}Mn_{0.2}Sn_{0.3}O₂ (B) Ce_{0.5}Fe_{0.2}Sn_{0.3}O₂ (C) Ce_{0.5}Sn_{0.5}O₂; TEM

images of the (a) $Ce_{0.5}Mn_{0.2}Sn_{0.3}O_2$ (b) $Ce_{0.5}Fe_{0.2}Sn_{0.3}O_2$ (c) $Ce_{0.5}Sn_{0.5}O_2$

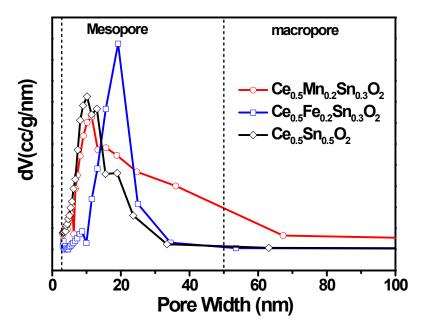


Figure S6. Pore-size distribution of the catalysts modified by Mn and Fe

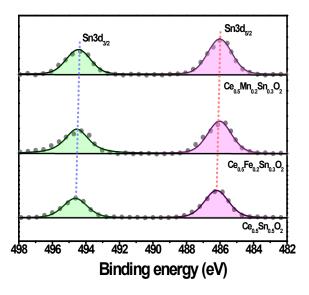


Figure S7. Sn 3d XPS spectra of the catalysts

Table S1 Textural	parameters of	all catalysts	derived from	N ₂ physisorption results

Sample	S _{BET} (m ² /g)	Pore volume(cm ³ /g)	Pore size (n m)
CeSnSn2	86.69	0.47	11.52
Ce_Fe_Sn_O_	42.49	0.25	19.20
Ce_Sn_O_2	63.28	0.24	10.13