Supporting Information

Outstanding performance of CuO/Fe-Ti spinel for Hg⁰ oxidation

as a co-benefit of NO abatement: Significant promotion of

Hg⁰ oxidation by CuO loading

Pengxiang Sun, Jian Mei,* Chang Wang, Zhen Ding, Qianqian Hong, Shijian Yang

School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, P. R. China

Corresponding Author:

* School of Environment and Civil Engineering, Jiangnan University. Telephone: 86-15121199536; E-mail: jsjhmj@126.com.

Content including: seven pages, one table, and four figures.

^{*} Corresponding author.

E-mail: jsjhmj@126.com (J. Mei).

1. Activity assessment system

As shown in Fig. S1, the assessment system for Hg⁰ oxidation mainly included four parts: a gas distribution system, a fixed-bed reaction system, a mercury detector, and an exhaust gas treatment system.

The gas distribution system consisted of different gas paths, which produced a simulated flue gas with 90 μ g m⁻³ Hg⁰, 10 ppm HCl, 5% O₂, chemical components (i.e., 8% H₂O, 500 ppm SO₂, 500 ppm NH₃, and 500 ppm NO when used), and N₂ balance. The stable concentrations of O₂, HCl, SO₂, NO, NH₃ and N₂ were all provided by the gas cylinders, the stable Hg⁰ concentration was provided by a Hg permeation tube (provided by Green Calm Instruments of Suzhou, China), and the stable H₂O concentration was provided by the bubbling method. All the gas flows were controlled by the mass flowmeters. Gaseous Hg⁰, O₂, HCl, SO₂, NO and N₂ balance were mixed by a gas mixer, which then was introduced into the fixed-bed reaction system. However, NH₃ and H₂O was directly introduced into the fixed-bed reaction system to void the reaction with HCl, respectively.

The fixed-bed reaction system was mainly composed of a reaction furnace, a temperature controller with a thermocouple, and a quartz reaction tube. The simulated flue gas generated by the gas distribution system was introduced into the quartz reaction tube with an inner diameter of 6 mm, and its temperature was controlled by the reaction furnace with a temperature controller. Before each experiment, the prepared catalyst with 40-60 mesh was packed in the quartz reaction tube using silica wool.

The Hg⁰ concentration in the outlet was detected online by a cold vapor atomic adsorption spectrophotometer (Lumex R-915M).

The exhaust gas containing Hg⁰ was purified by activated carbons and then emitted into the air.

	Fe ³⁺	Cu^{2+}
Fe-Ti spinel	21.8	-
CuO/Fe-Ti spinel	21.0	0.9

 Table S1 Percentages of Fe³⁺ and Cu²⁺ on Fe-Ti and CuO/Fe-Ti spinel resulted from the XPS

 analysis
 /%

Fig. S1 Flow diagram of the experimental setup for Hg^0 oxidation.

Fig. S2 Hg⁰ and NO removal efficiencies and N2O selectivity of CuO/Fe-Ti spinel under normalSCR conditions at 350 °C for 10 h. Operating conditions: catalyst weight = 500 mg and MHSV = 6.0×10^4 cm³g⁻¹h⁻¹.

Fig. S3 XPS spectra for CuO/Fe-Ti spinel after Hg⁰ oxidation in the Fe 2p, Ti 2p, O 1s, and Cu

 $2p_{3/2}$

spectral

regions.

Fig. S4 Rates of Hg⁰ oxidation and Hg⁰ adsorption on CuO/Fe-Ti spinel resulted from Fig. 8b.