Electronic Supporting Information:

Molybdenum-decorated V_2O_5 -WO₃/TiO₂: Surface engineering toward boosting the acid cycle and redox cycle of NH₃-SCR

Ziyi Chen, Xiaomin Wu, Kaiwen Ni, Huazhen Shen, Zhiwei Huang, Zuoming Zhou and Guohua Jing*

Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China

*Corresponding authors. Tel.: +86-0592-6162300.

E-mail: <u>zhoujing@hqu.edu.cn</u>

Characterization

XRD patterns of the samples were obtained with a Bruker D8 Advance X-ray diffractometer with scan rate of 5°/min in the range from 20° to 80°. The BET method was used to measure the specific surface areas of the catalysts. The morphology of the catalyst was observed by SEM with a Hitachi SU8020. A FEI Tecnai G20 instrument was used to collect TEM and HRTEM images at an accelerating voltage of 200 kV. XPS experiments were performed with a Thermo Scientific Escalab 250Xi electron spectrometer, calibrated by the C 1 s peak at a binding energy (B.E.) of 284.6 eV. ICP data were collected by an iCAPQ6300 (Thermo Fisher). Raman experiments were carried out on a HORIBA HR Evolution spectrometer equipped with an optical microscope at room temperature. Dehydrated-Raman spectra were recorded at 250 °C in a feed gas of O_2/He (5 vol.%H2/N2) with a flow rate of 60 mL/min after dehydration pretreatment at 400 °C for 0.5 h. ⁵¹V NMR experiments were performed on a Bruker AVANCE III 600 spectrometer operating at a frequency of 157.8 MHz. Spectra were obtained from 35000 scans with a 0.3 s recycle delay in a spectral width of 1 MHz.

 H_2 -TPR and NH₃-TPD were conducted on a Quantachrome AutoSorb IQ-C-TCD-MS analyzer and Micromeritics Autochem 2920, respectively. For H₂-TPR, the sample (100 mg) was pretreated with a flow of He for 30 min at 300 °C. After cooling to room temperature, the sample was heated with a ramp of 10 °C/min in flowing H₂ (5 vol.% H₂/N₂) with a flow rate of 50 mL/min. The temperature was increased from 30 °C to 1000 °C. For NH₃-TPD, the sample (100 mg) was pretreated for 30 min at 300 °C in a flow of highly purified He. After cooling to room temperature, the sample was exposed to NH₃ (1 vol% NH₃/He) with a flow rate of 100 mL/min for 1 h at 30 °C, followed by purging with pure He to remove gaseous NH₃ and physically adsorbed NH₃. Finally, NH₃ desorption took place in a 100 mL/min flow of He with heating rate of 10 °C/min from 30 °C to 800 °C.

In situ DRIFTs spectra were collected on a Nicolet 6700 FTIR spectrometer equipped with a high-temperature reaction cell. Before each test, the catalyst was pretreated in flowing N_2 for 30 min at 400 °C. Subsequently, the temperature was cooled to 250 °C, and background spectra subtracted from the sample spectrum was recorded for each measurement. All spectra were recorded by accumulating 64 scans at a 4 cm⁻¹ resolution.

Catalytic Evaluation

The NH₃-SCR activity was analyzed with a continuous fixed-bed quartz reactor (i.d. = 6 mm) at atmospheric pressure. The program temperature ranged from 100°C to 400 °C. In each test, the catalyst was sieved to 40-60 mesh first, and then 0.5 g of sample was fixed on quartz wool in the middle of the reactor. Gaseous N₂ was used as the carrier gas, and the feed gas contained NO (600 ppm), NH₃ (600 ppm), O₂ (6.0 vol.%), SO₂ (100 ppm when used) and H₂O (5.5% when used). The gas hourly space velocity (GHSV) was 51000 h⁻¹ and the total flow rate was 600 mL/min. The concentrations of NO, NO₂, N₂O and NH₃ at the inlet and outlet were measured by a gas analyzer (Testo 350, Germany). The calculation equations of NO conversion and N₂ selectivity are as follows:

NO conversion (%) =
$$\left(1 - \frac{[NO]_{out}}{[NO]_{in}}\right) \times 100\%$$
 (1)

N₂ selectivity (%) =
$$(1 - \frac{[NO_2]_{out} + 2[N_2O]_{out}}{[NO]_{in} + [NH_3]_{in} - [NO]_{out} - [NH_3]_{out}}) \times 100\%$$
 (2)

Assuming that the plug flow reactor (on the fixed catalyst bed) had no diffusion limitation, the NH₃-SCR reaction rate coefficient (k) over the samples was calculated by the following equation:

$$\mathbf{k} = \left(-\frac{F_0}{[NO]_0 W}\right) \times \ln(1 - \mathbf{x}) \tag{3}$$

where F_0 represents the molar NO feed rate (mol/s), [NO]₀ represents the inlet NO molar concentration (mol/mL), W_{cat} represents the weight of sample (g), and x represents NO conversion (%).

The number of atoms per unit area was calculated as follows.^[S1]

$$N_{number} = \frac{WN_A}{MA_{BET}} \tag{4}$$

where N_{number} stands for the atom number of the element per unit area, W stands for the percentage of the element, N_A represents Avogadro's constant, M represents relative the atomic mass of the element, and A_{BET} represents the BET specific surface area.

Table

Table S1 Surface/bulk atomic concentration of the VW/Ti and xMo-VW/Ti (x=1, 3, 5, 7, and9 wt.%) catalysts.

Sample	bulk atomic concentration		Surface atomi	c concentration	The ratio of bulk atomic to		
	(wt.	.%) ^a	(wt	.%) ^b	surface atomic		
	V	Мо	V	Мо	surface V/ bulk V		
VW/Ti	0.717		0.491		0.69		
1Mo-VW/Ti	0.712	1.06	0.502	1.87	0.71		
3Mo-VW/Ti	0.706	2.99	0.534	2.07	0.76		
5Mo-VW/Ti	0.686	5.23	0.601	3.23	0.88		
7Mo-VW/Ti	0.670	7.37	0.648	5.65	0.97		
9Mo-VW/Ti	0.690	10.6	0.480	6.96	0.70		

^aCalculated by the ICP results.

^bCalculated by the XPS results.

O 1s		V 2p			Mo 3d			W 4f		
Materials	BE (eV)	$O_{ads}/(O_{ads}+O_{latt})\%$ BE (eV)		(eV)	$V^{4+}/(V^{4+}+V^{5+})\%$ BE (eV)		Mo ⁶⁺ /(Mo ⁶⁺ +Mo ⁵⁺)%	BE (eV)		
	O _{latt} O _{ads}	_	V ⁴⁺	V ⁵⁺		Mo ⁵⁺	Mo ⁶⁺		W ⁵⁺	W ⁶⁺
VW/Ti	530.2 531.4	28.0	516.2	517.2	67.2	-	-	-	35.6	36.9
1Mo-VW/Ti	530.2 531.2	28.5	516.3	517.4	68.2	231.5	232.8	73.7	35.5	36.9
3Mo-VW/Ti	530.2 531.1	28.6	516.3	517.4	70.4	231.8	232.8	74.7	35.5	36.9
5Mo-VW/Ti	530.2 531.1	29.1	516.3	517.5	71.8	232.0	232.9	75.1	35.5	36.9
7Mo-VW/Ti	530.1 531.1	29.5	516.4	517.5	73.3	232.1	232.9	80.2	35.4	36.8
9Mo-VW/Ti	530.1 531.1	25.1	516.4	517.5	71.2	232.3	232.9	77.9	35.3	36.8

Table S2 The XPS results of the VW/Ti and xMo-VW/Ti (x=1, 3, 5, 7, and 9 wt.%) catalysts for O 1s, V 2p, Mo 3d, W 4f.

Figures

Fig. S1. N₂O formation for the NH₃-SCR activity of the VW/Ti and xMo-VW/Ti (x=1, 3, 5, 7, and 9 wt.%) catalysts.

Fig. S2. (a-e) SEM images, and (f) EDX result of the 7Mo-VW/Ti catalyst.

Fig. S3. Raman spectra of the VW/Ti and xMo-VW/Ti (x=1, 3, 5, 7, and 9 wt.%) catalysts at different ranges.

Raman spectra of all catalysts at different ranges are depicted in Fig. S3. In Fig. S3a, the peaks at 147 cm⁻¹, 394 cm⁻¹, 514 cm⁻¹ and 636 cm⁻¹ were attributed to anatase TiO₂.^[S2,S3] Raman spectra with a narrowed high scan range of 700-1200 cm⁻¹ are presented in Fig. S3b. The band at ~800 cm⁻¹ was ascribed to Ti-O vibration of TiO₂ or W=O stretching mode of crystalline WO₃.^[S4-S6] According to a previous report,^[S7] the doubly coordinated oxygen O-Mo-O stretching of the broadened asymmetric band centered at approximately 819 cm⁻¹ was not detected. The reasonable explanation was that little MoO₃ incorporated into the bulk phase, resulting in the formation of bulk-like MoO₃.^[S8,S9] The band at 983 cm⁻¹ was attributed to terminal Mo=O stretching.^[S10] It is obvious that the strength of the band at 970-980 cm⁻¹ increased and the shift occured, indicating more polymeric molybdenum oxide formed.^[S1,S10] When the loading amount of MoO₃ exceeded 7 wt.%, a week peak of nearly 1000 cm⁻¹ appeared attributed to monomeric surface vanadia or a few crystalline MoO₃ species.^[S11]

Fig. S4. XPS spectra for (a) W 4f and (b) Ti 2p of the VW/Ti and xMo-VW/Ti (x=1, 3, 5, 7, and 9 wt.%) catalysts.

Fig. S5. In situ DRIFTs spectra of the (a) 7Mo-VW/Ti and (c) VW/Ti catalysts pretreated by exposure to 600 ppm NO + 6 vol.% O₂ followed by exposure to 600 ppm NH₃ at 250 °C, and the corresponding mapping of the (b) 7Mo-VW/Ti, and (d) VW/Ti catalysts.

Fig. S5 shows the *in situ* DRIFTs spectra of the reaction between pre-adsorbed NO species and gaseous NH₃ on the 7Mo-VW/Ti and VW/Ti catalysts. The changes in the profiles on both of the 7Mo-VW/Ti and VW/Ti catalyst were very similar. After NO + O_2 pretreated and N₂ purging, no obvious peaks remained on both of the catalyst surface, suggesting that the capacity of NO adsorbed on the catalyst surface was very weak. As time went on for 5 min, a large amount of NH₄⁺(B) (1670 and 1423 cm⁻¹) and NH₃(L) (3380, 3356, 3161, 1244, and 1217 cm⁻¹) species were generated. The weak bands of NH₂ amide groups (1560 and 1327 cm⁻¹) from the intermediate of ammonia oxidation were also observed. In addition, for the 7Mo-VW/Ti catalyst, molybdenyl species acted as the adsorption sites for NH₃ adsorption, so a negative peak of Mo=O bond (1973 cm⁻¹) was found because of the influence of NH₃ to unsaturated molybdenyl species.

References

- [S1] G. Dong, Y. Bai, Y. Zhang and Y. Zhao, New J. Chem., 2015, 39, 3588-3596.
- [S2] Y. Geng, X. Chen, S. Yang, F. Liu and W. Shan, ACS Appl. Mater. Inter., 2017, 9, 16952-16959.
- [S3] W. Shan, F. Liu, H. He, X. Shi and C. Zhang, Appl. Catal. B, 2012, 115-116, 100-106.
- [S4] C. Wang, S. Yang, H. Chang, Y. Peng and J. Li, Chem. Eng. J., 2013, 225, 520-527.
- [S5] X. Liu, X. Wu, T. Xu, D. Weng, Z. Si and R. Ran, Chinese J. Catal., 2016, 37, 1340-1346.
- [S6] D. W. Kwon, K. H. Park and S. C. Hong, Chem. Eng. J., 2016, 284, 315-324.
- [S7] V. Jadkar, A. Pawbake, R. Waykar, A. Jadhavar, A. Mayabadi, A. Date, D. Late, H. Pathan, S. Gosavi and S. Jadkar, J. Mater. Sci.: Mater. El., 2017, 28, 15790-15796.
- [S8] R. S. Stampel, Y. Chen, J. A. Dumesic, C. Niu and C. G. Hill, J. Catal., 1987, 105, 445-454.
- [S9] Z. Huang, Y. Du, J. Zhang, X. Wu, H. Shen and G. Jing, *Environ. Sci. Technol.*, 2019, 53, 5309-5318.
- [S10] L. Lietti, I. Nova, G. Ramis, L. Dall'Acqua, G. Busca, E. Giamello, P. Forzatti and F. Bregani, J. Catal., 1999, 187, 419-435.
- [S11] D. W. Kwon, K. H. Park, H. P. Ha and S. C. Hong, *Appl. Surf. Sci.*, 2019, 481, 1167-1177.