Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Mechanistic Insights into Dominant Reaction Route and Catalyst Deactivation in Biogas Reforming using *ab initio* Microkinetic Modeling

Fatima Jalid^{1,2}, M. Ali Haider^{1,\$}, Md. Imteyaz Alam¹, Tuhin S. Khan^{3,\$}

 ¹Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.
²Department of Chemical Engineering, National Institute of Technology Srinagar, Srinagar, Jammu and Kashmir, 190006, India
³Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 24805, India
[§]Corresponding Authors Email: <u>haider@iitd.ac.in, tuhins.khan@iip.res.in</u> Fax: +91-11-2658-2037;Tel: +91-11-26591016

SI-1 Reaction Scheme

The elementary reactions included in the MKM to understand the biogas reforming (BGR) on the terrace and stepped sites of transition metal catalysts are mentioned below. '*t' represents a free step site (111), '*s' represents a free step site (211), '*h' represents the hydrogen site and the subscript '(g)' represents the gas phase species. The superscript 't', 's' and 'h' represents species adsorbed on terrace sites, step site and hydrogen site respectively. The following are the reaction steps studied for (111) sites:

$$\begin{array}{l} \mathrm{CH}_{4(\mathbf{g})} + *\mathbf{h} + *\mathbf{t} \xrightarrow{\rightarrow} \mathrm{CH}_{3}\mathbf{t} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}_{4(\mathbf{g})} + \mathrm{OH}^{\mathbf{t}} + *\mathbf{t} \xrightarrow{\rightarrow} \mathrm{CH}_{3}\mathbf{t} + \mathrm{H}_{2}\mathrm{Ot} \\ \mathrm{CH}_{4(\mathbf{g})} + \mathrm{Ot}^{\mathbf{t}} + *\mathbf{t} \xrightarrow{\rightarrow} \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}_{3}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}_{2}\mathbf{t} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}_{3}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}_{2}\mathbf{t} + \mathrm{H}_{2}\mathrm{Ot} \\ \mathrm{CH}_{3}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}_{2}\mathbf{t} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}_{2}\mathbf{t}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}_{2}\mathbf{t}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}_{2}\mathbf{t}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CH}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{C}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \\ \mathrm{CH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{C}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{OH}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \xrightarrow{\rightarrow} \mathrm{OH}^{\mathbf{t}} + *\mathrm{h} \\ \mathrm{O}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \xrightarrow{\rightarrow} \mathrm{OH}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{OH}^{\mathbf{t}} + \mathrm{H}^{\mathbf{h}} \xrightarrow{\rightarrow} \mathrm{H}_{2}\mathrm{O}_{(\mathbf{g})} + *\mathrm{t} \\ \mathrm{H}_{2}\mathrm{O}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{H}_{2}\mathrm{O}_{(\mathbf{g})} + *\mathrm{t} \\ \mathrm{CO}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CO}^{\mathbf{t}} + *\mathrm{t} \\ \mathrm{CO}^{\mathbf{t}} \xrightarrow{\rightarrow} \mathrm{CO}^{\mathbf{t}} + \mathrm{O}^{\mathbf{t}} \\ \mathrm{CO}_{2(\mathbf{g})} + *\mathrm{t} + *\mathrm{t} \xrightarrow{\rightarrow} \mathrm{CO}^{\mathbf{t}} + \mathrm{O}^{\mathbf{t}} \end{array}$$

 $\begin{array}{c} \mathrm{CO}_{2(\mathbf{g})} + \mathrm{H}^{\mathbf{h}} + *t \rightarrow \mathrm{COOH}^{\mathbf{t}} + *\mathrm{h} \\ \mathrm{COOH}^{\mathbf{t}} + *t \rightarrow \mathrm{CO}^{\mathbf{t}} + \mathrm{OH}^{\mathbf{t}} \\ \mathrm{C}^{\mathbf{t}} + \mathrm{C}^{\mathbf{t}} \rightarrow \mathrm{C}_{2}^{\mathbf{t}} + *\mathrm{t} \\ \mathrm{C}_{2}^{\mathbf{t}} + \mathrm{C}_{2}^{\mathbf{t}} + \mathrm{C}_{2}^{\mathbf{t}} \rightarrow \mathrm{C}_{6}^{\mathbf{t}} + *\mathrm{t} + *\mathrm{t} \\ \mathrm{C}_{6}^{\mathbf{t}} \rightarrow \mathrm{C}_{6}^{\mathbf{t}} \mathrm{(g)} + *\mathrm{t} \end{array}$

The following are the reaction steps studied for (211) sites:

$$\begin{array}{l} \operatorname{CH}_{4(g)} + *h + *s \xrightarrow{} \operatorname{CH}_{3} * + \operatorname{Hh}\\ \operatorname{CH}_{4(g)} + \operatorname{OH}^{s+} *s \xrightarrow{} \operatorname{CH}_{3} * + \operatorname{H2}_{2} \operatorname{Os}\\ \operatorname{CH}_{4(g)} + O^{s+} *s \xrightarrow{} \operatorname{CH}_{3} * + \operatorname{OH}^{s}\\ \operatorname{CH}_{3} * *h \xrightarrow{} \operatorname{CH}_{2} * + \operatorname{Hh}\\ \operatorname{CH}_{3} * + \operatorname{OH}^{s} \xrightarrow{} \operatorname{CH}_{2} * + \operatorname{Hh}\\ \operatorname{CH}_{3} * + \operatorname{OH}^{s} \xrightarrow{} \operatorname{CH}_{2} * + \operatorname{Hh}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{CH}_{2} + \operatorname{OH}^{s}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{Hh}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{Hh}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{OH}^{s}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{Hh}\\ \operatorname{CH}_{2} * + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{OH}^{s}\\ \operatorname{CH}^{s+} + OH \xrightarrow{} \operatorname{S} \xrightarrow{} \operatorname{CH}^{s+} + \operatorname{OH}^{s}\\ \operatorname{CH}^{s+} + OH^{s} \xrightarrow{} \operatorname{Cs}^{s+} + \operatorname{OH}^{s}\\ \operatorname{CH}^{s+} + OH^{s} \xrightarrow{} \operatorname{Cs}^{s+} + \operatorname{OH}^{s}\\ \operatorname{OH}^{s+} + \operatorname{Hh} \xrightarrow{} \operatorname{OH}^{s+} + \operatorname{Hh}\\ \operatorname{O}^{s+} + \operatorname{Hh} \xrightarrow{} \operatorname{OH}^{s+} + \operatorname{Hh}\\ \operatorname{OH}^{s+} + \operatorname{Hh} \xrightarrow{} \operatorname{H}_{2}\operatorname{O}^{s+} \times \operatorname{Hh}\\ \operatorname{H}_{2}\operatorname{O}^{s} \xrightarrow{} \operatorname{CO}_{2} = + *s\\ \operatorname{CO}^{s} \xrightarrow{} \operatorname{CO}_{2} = + *s\\ \operatorname{CO}^{s} \xrightarrow{} \operatorname{CO}_{2} = + *s\\ \operatorname{COOH}^{s+} * s \xrightarrow{} \operatorname{CO}^{s+} \operatorname{OH}^{s+} + \operatorname{Hh}\\ \operatorname{COOH}^{s+} * s \xrightarrow{} \operatorname{CO}^{s+} + \operatorname{OH}^{s}\\ \operatorname{COOH}^{s+} * s \xrightarrow{} \operatorname{CO}^{s+} \times s \xrightarrow{} \operatorname{C}_{2}^{s+} * s\\ \operatorname{C}_{2}^{s+} + \operatorname{C}_{2}^{s} \xrightarrow{} \operatorname{C}_{6}^{s+} * s \xrightarrow{} s \times s\\ \operatorname{C}_{6}^{s} \xrightarrow{} \operatorname{C}_{6} = + *s \end{array}$$

Figure SI-1 Adsorbed Configuration of C₂ on (111) and (211) facets of Ag, Cu, Pt, Pd, Ni and Rh

Figure SI-2 Adsorbed Configuration of C_6 on (111) and (211) facets of Ag, Cu, Pt, Pd, Ni and Rh

SI-2 Entropy and Frequency of Gas Phase Species

The fixed entropy correction for gas phase species is given in Table SI-1.

Gas Phase Species	Entropy (eV)
H ₂	0.00135
H ₂ O	0.0018884
CH ₄	0.0018637
CO	0.0019766
CO ₂	0.0021379
C ₆	0.0001

	Table SI-	-1 Entropy	of Gas	Phase	Species
--	-----------	------------	--------	-------	---------

The zero-point energy of the gas phase species used in the MKM are given in Table SI-2.

Gas Phase Species	ZPE (eV)
H ₂	0.54565
H ₂ O	0.43884, 0.1914, 0.45072
CH ₄	0.35004, 0.18408, 0.18408, 0.37308, 0.37308, 0.37272,
	0.37272, 0.37272
СО	0.2604
CO ₂	0.15996, 0.28188, 0.08004, 0.08004
C ₆	7.31736

Table SI-2 ZPE of Gas Phase Species

SI-3 Reactivity of terrace sites for biogas reforming

The consumption rate of H_2 , production rate of H_2O and coverage of the rest of species (O*) for MKM evaluated for BGR at terrace sites is shown in Figure SI-1, Figure SI-2 and Figure SI-3 respectively.

Figure SI-3 Volcano plots showing reactant consumption rates of H_2 in BGR over the (111) surfaces of transition metals. Error bar = 0.2 eV.

Figure SI-4 Volcano plots showing product formation rates of H_2O in BGR over the (111) surfaces of transition metals. Error bar = 0.2 eV.

Figure SI-5 Coverage plots showing coverage of (a) O*, (b) CH* and (c) H* in BGR over the (111) surfaces of transition metals. Error bar = 0.2 eV.

SI-4 Reactivity of stepped sites for biogas reforming

The consumption rate of H_2 , production rate of H_2O and coverage of the rest of species for MKM evaluated for BGR at stepped sites is shown in Figure SI-4 and Figure SI-5, respectively.

Figure SI-6 Volcano plots showing reactant consumption rate of (a) H_2 and product formation rates of (b) H_2O in BGR over the (211) surfaces of transition metals. Error bar = 0.2 eV.

Figure SI-7 Coverage plots showing coverage of O^* in BGR over the (211) surfaces of transition metals. Error bar = 0.2 eV.

SI-5 Reaction Energetics

The formation energies of the species used in the model are listed in Table SI-3. The formation energies of all the species are referenced with respect to methane, hydrogen, and water; for C, H and O atom respectively. The energies have been obtained from previous literature¹⁻¹⁰ and

calculated in this work. The computational details of the reference articles is given in Table SI-

4.

Species	Facet	Surface	Formation Energy (eV)
CO ₂	gas	None	2.47
CO	gas	None	2.77
CH ₄	gas	None	0
H ₂ O	gas	None	0
H ₂	gas	None	0
C ₆	gas	None	4.66
С	111	Ag	5.57
С	111	Au	4.77
С	111	Со	1.76
С	111	Cu	4.36
С	111	Ni	2.46
С	111	Pd	2.52
С	111	Pt	2.16
С	111	Rh	1.95
С	111	Ru	1.73
C-C	111	Ag	10.97
C-C	111	Au	9.69
C-C	111	Cu	9.03
C-C	111	Ni	5.99
C-C	111	Pd	6.09
C-C	111	Pt	5.51
C-C	111	Rh	5.18
C-H	111	Ag	6.53
C-H	111	Au	5.81
C-H	111	Со	2.81
C-H	111	Cu	5.06
C-H	111	Ni	2.87
C-H	111	Pd	3.12
C-H	111	Pt	3.10
C-H	111	Rh	2.56
C-H	111	Ru	2.53
C-0	111	Ag	8.15
C-0	111	Au	7.96
C-O	111	Cu	6.40

Table SI-3 Formation energies of the species used in the MKM. Formation energies arereferences to CH4, H2O and H2.

C-0	111	Ni	4.30
C-O	111	Pd	5.31
C-O	111	Pt	5.08
C-O	111	Rh	4.05
C ₂	111	Ag	6.71
C ₂	111	Cu	5.72
C ₂	111	Ni	4.55
C ₂	111	Pd	5.28
C ₂	111	Pt	5.55
C ₂	111	Rh	4.45
C ₂	111	Ru	3.95
C ₆	111	Cu	16.84
C ₆	111	Ni	15.18
C ₆	111	Pd	15.51
C ₆	111	Pt	16.16
C ₆	111	Rh	15.96
C ₆	111	Ru	14.74
СН	111	Ag	3.96
СН	111	Au	3.23
СН	111	Со	1.51
СН	111	Cu	2.85
СН	111	Ni	1.48
СН	111	Pd	1.74
СН	111	Pt	1.23
СН	111	Rh	1.21
СН	111	Ru	1.14
CH ₂	111	Ag	3.04
CH ₂	111	Au	2.65
CH ₂	111	Со	1.45
CH ₂	111	Cu	2.35
CH ₂	111	Ni	1.44
CH ₂	111	Pd	1.64
CH ₂	111	Pt	1.21
CH ₂	111	Rh	1.33
CH ₂	111	Ru	1.17
CH ₃	111	Ag	1.60
CH ₃	111	Au	1.35
CH ₃	111	Со	0.89
CH ₃	111	Cu	1.30
CH ₃	111	Ni	0.93
CH ₃	111	Pd	0.92
CH ₃	111	Pt	0.55

CH ₃	111	Rh	0.84
CH ₃	111	Ru	0.73
СО	111	Ag	2.99
СО	111	Au	3.04
СО	111	Cu	2.58
СО	111	Ni	1.63
СО	111	Pd	1.55
СО	111	Pt	1.70
СО	111	Rh	1.34
СО	111	Ru	1.30
СО-ОН	111	Ag	4.98
СО-ОН	111	Au	5.59
СО-ОН	111	Cu	4.36
СО-ОН	111	Ni	3.51
СО-ОН	111	Pd	4.04
СО-ОН	111	Pt	4.18
СО-ОН	111	Rh	3.47
СО-ОН	111	Ru	3.24
СОО-Н	111	Cu	3.79
СОО-Н	111	Pd	2.92
СОО-Н	111	Pt	3.05
СОО-Н	111	Rh	3.14
СООН	111	Ag	3.13
СООН	111	Au	3.01
СООН	111	Cu	2.82
СООН	111	Ni	2.25
СООН	111	Pd	2.39
СООН	111	Pt	1.41
СООН	111	Rh	1.23
Н	111	Ag	0.24
Н	111	Au	0.17
Н	111	Cu	-0.09
Н	111	Ni	-0.39
Н	111	Pd	-0.40
Н	111	Pt	-0.35
Н	111	Rh	-0.32
Н	111	Ru	-0.44
H-CH	111	Ag	4.90
H-CH	111	Au	4.26
H-CH	111	Со	1.73
H-CH	111	Cu	3.52
H-CH	111	Ni	1.78

H-CH	111	Pd	2.24
H-CH	111	Pt	1.80
H-CH	111	Rh	1.40
H-CH	111	Ru	1.39
H-CH ₂	111	Ag	3.99
H-CH ₂	111	Au	3.45
H-CH ₂	111	Со	1.65
H-CH ₂	111	Cu	2.87
H-CH ₂	111	Ni	1.73
H-CH ₂	111	Pd	1.95
H-CH ₂	111	Pt	1.53
H-CH ₂	111	Rh	1.44
H-CH ₂	111	Ru	1.43
H-CH ₃	111	Ag	2.49
H-CH ₃	111	Au	2.23
H-CH ₃	111	Со	1.43
H-CH ₃	111	Cu	1.94
H-CH ₃	111	Ni	1.27
H-CH ₃	111	Pd	1.13
H-CH ₃	111	Pt	1.06
H-CH ₃	111	Rh	1.08
H-CH ₃	111	Ru	1.06
H-H	111	Au	1.15
H-H	111	Cu	0.78
H-H	111	Pd	0.12
H-H	111	Pt	0.19
H-OH	111	Ag	1.78
H-OH	111	Au	2.00
H-OH	111	Со	1.03
H-OH	111	Cu	1.30
H-OH	111	Ni	0.91
H-OH	111	Pd	1.18
H-OH	111	Pt	0.85
H-OH	111	Rh	0.85
H-OH	111	Ru	0.74
H ₂ O	111	Ag	-0.04
H ₂ O	111	Au	-0.03
H ₂ O	111	Со	-0.05
H ₂ O	111	Cu	-0.04
H ₂ O	111	Ni	-0.05
H ₂ O	111	Pd	-0.08
H ₂ O	111	Pt	-0.05

H ₂ O	111	Rh	-0.11
H ₂ O	111	Ru	-0.21
0	111	Ag	2.05
0	111	Au	2.61
0	111	Со	0.15
0	111	Cu	1.07
0	111	Ni	0.35
0	111	Pd	1.55
0	111	Pt	1.62
0	111	Rh	0.55
0	111	Ru	-0.07
O-CO	111	Ag	5.05
O-CO	111	Au	5.74
O-CO	111	Cu	4.18
O-CO	111	Ni	3.25
O-CO	111	Pd	4.20
O-CO	111	Pt	4.04
O-CO	111	Rh	3.10
O-CO	111	Ru	2.53
О-Н	111	Ag	3.09
О-Н	111	Au	3.56
О-Н	111	Со	1.02
О-Н	111	Cu	2.03
O-H	111	Ni	1.18
O-H	111	Pd	2.12
O-H	111	Pt	2.12
О-Н	111	Rh	1.52
О-Н	111	Ru	1.31
OH	111	Ag	0.67
OH	111	Au	1.39
OH	111	Со	0.05
OH	111	Cu	0.30
OH	111	Ni	0.20
OH	111	Pd	0.94
OH	111	Pt	0.96
OH	111	Rh	0.43
OH	111	Ru	0.19
С	211	Ag	5.07
С	211	Au	4.77
С	211	Со	1.70
С	211	Cu	3.54
С	211	Ni	1.52

C	211	Pd	1.51
С	211	Pt	2.10
С	211	Rh	1.38
С	211	Ru	1.23
C-C	211	Ag	11.02
C-C	211	Au	10.36
C-C	211	Со	5.07
C-C	211	Cu	8.22
C-C	211	Pt	6.03
C-C	211	Rh	4.51
C-C	211	Ru	4.37
С-Н	211	Cu	4.31
С-Н	211	Pd	2.25
С-Н	211	Pt	3.06
С-Н	211	Rh	1.97
С-Н	211	Ru	1.74
С-НО	211	Ag	5.92
С-НО	211	Cu	4.15
С-НО	211	Pd	2.73
С-НО	211	Pt	3.26
С-НО	211	Rh	2.01
С-НОН	211	Ag	5.40
С-НОН	211	Cu	4.03
С-НОН	211	Pd	2.29
С-НОН	211	Pt	2.83
С-НОН	211	Rh	2.08
C-O	211	Ag	8.07
C-0	211	Au	8.18
C-O	211	Со	3.19
C-0	211	Ni	3.43
C-O	211	Pd	4.63
C-O	211	Pt	4.11
C-O	211	Rh	3.03
C-O	211	Ru	2.80
C ₂	211	Ag	5.8
C ₂	211	Cu	4.44
C ₂	211	Ni	3.57
C ₂	211	Pd	4.03
C ₂	211	Rh	4.23
C ₆	211	Ag	16.63
C ₆	211	Cu	15.28
C ₆	211	Ni	14.13

C ₆	211	Pd	13.44
C ₆	211	Pt	14.28
C ₆	211	Rh	12.22
СН	211	Ag	3.96
СН	211	Au	3.43
СН	211	Со	1.16
СН	211	Cu	2.70
СН	211	Ni	1.22
СН	211	Pd	1.57
СН	211	Pt	1.19
СН	211	Rh	1.01
СН	211	Ru	0.71
CH ₂	211	Ag	2.87
CH ₂	211	Au	2.23
CH ₂	211	Со	0.79
CH ₂	211	Cu	2.22
CH ₂	211	Ni	1.14
CH ₂	211	Pd	1.28
CH ₂	211	Pt	0.76
CH ₂	211	Rh	0.76
CH ₂	211	Ru	0.69
CH ₃	211	Ag	1.39
CH ₃	211	Au	1.10
CH ₃	211	Со	0.04
CH ₃	211	Cu	0.97
CH ₃	211	Ni	0.39
CH ₃	211	Pd	0.79
CH ₃	211	Pt	0.46
CH ₃	211	Rh	0.36
CH ₃	211	Ru	0.06
СО	211	Ag	2.87
СО	211	Au	2.57
СО	211	Со	1.40
СО	211	Cu	2.28
СО	211	Ni	1.25
СО	211	Pd	1.22
СО	211	Pt	1.11
СО	211	Rh	1.07
СО	211	Ru	0.98
СО-ОН	211	Ag	3.75
СО-ОН	211	Au	4.14
СО-ОН	211	Cu	2.97

СО-ОН	211	Pd	3.10
СО-ОН	211	Pt	2.80
СО-ОН	211	Rh	2.40
СО-ОН	211	Ru	2.27
СОО-Н	211	Ag	4.36
СОО-Н	211	Cu	3.88
СОО-Н	211	Pd	2.85
СОО-Н	211	Pt	2.62
СОО-Н	211	Rh	2.60
СООН	211	Ag	3.05
СООН	211	Cu	2.70
СООН	211	Pd	2.17
СООН	211	Pt	1.94
СООН	211	Rh	1.59
Н	211	Ag	0.24
Н	211	Au	0.17
Н	211	Cu	-0.09
Н	211	Ni	-0.39
Н	211	Pd	-0.40
Н	211	Pt	-0.35
Н	211	Rh	-0.32
Н	211	Ru	-0.44
H-CH	211	Ag	4.74
H-CH	211	Au	4.58
H-CH	211	Со	1.78
H-CH	211	Cu	3.27
H-CH	211	Ni	1.93
H-CH	211	Pd	2.05
H-CH	211	Pt	2.35
H-CH	211	Rh	1.54
H-CH	211	Ru	1.07
H-CH ₂	211	Ag	3.52
H-CH ₂	211	Au	2.81
H-CH ₂	211	Со	0.99
H-CH ₂	211	Cu	2.50
H-CH ₂	211	Ni	1.41
H-CH ₂	211	Pd	1.53
H-CH ₂	211	Pt	0.94
H-CH ₂	211	Rh	0.79
H-CH ₂	211	Ru	0.68
H-CH ₃	211	Ag	2.23
H-CH ₃	211	Au	1.83

H-CH ₃	211	Со	0.86
H-CH ₃	211	Cu	1.70
H-CH ₃	211	Ni	1.13
H-CH ₃	211	Pd	0.83
H-CH ₃	211	Pt	0.73
H-CH ₃	211	Rh	0.66
H-CH ₃	211	Ru	0.52
H-H	211	Au	1.15
H-H	211	Cu	0.78
H-H	211	Pd	0.12
H-H	211	Pt	0.19
H-OH	211	Au	1.82
H-OH	211	Cu	0.80
H-OH	211	Ni	0.35
H-OH	211	Pd	0.82
H-OH	211	Pt	0.72
H-OH	211	Rh	0.49
H-OH	211	Ru	-0.01
H ₂ O	211	Ag	-0.12
H ₂ O	211	Со	-0.37
H ₂ O	211	Cu	-0.18
H ₂ O	211	Ni	-0.32
H ₂ O	211	Pd	-0.18
H ₂ O	211	Pt	-0.14
H ₂ O	211	Rh	-0.29
H ₂ O	211	Ru	-0.57
НОН-СН	211	Ag	4.44
НОН-СН	211	Cu	3.30
НОН-СН	211	Pd	2.34
НОН-СН	211	Pt	2.04
НОН-СН	211	Rh	1.76
HOH-CH ₂	211	Ag	3.51
HOH-CH ₂	211	Cu	2.89
HOH-CH ₂	211	Pd	2.09
HOH-CH ₂	211	Pt	1.67
HOH-CH ₂	211	Rh	1.55
HOH-CH ₃	211	Ag	2.23
HOH-CH ₃	211	Cu	1.82
HOH-CH ₃	211	Pd	1.67
HOH-CH ₃	211	Pt	1.42
HOH-CH ₃	211	Rh	1.20
0	211	Ag	1.88

0	211	Au	2.60		
0	211	Со	-0.15		
0	211	Cu	0.99		
0	211	Ni	0.13		
0	211	Pd	1.50		
0	211	Pt	1.26		
0	211	Rh	0.16		
0	211	Ru	-0.10		
0-C0	211	Ag	5.10		
0-C0	211	Au	5.45		
0-C0	211	Со	2.73		
0-C0	211	Cu	3.92		
0-C0	211	Ni	2.77		
0-C0	211	Pd	3.99		
0-C0	211	Pt	3.53		
0-C0	211	Rh	2.56		
0-C0	211	Ru	2.35		
О-Н	211	Ag	2.80		
О-Н	211	Au	3.18		
О-Н	211	Cu	1.63		
О-Н	211	Ni	0.68		
О-Н	211	Pd	1.75		
О-Н	211	Pt	1.60		
О-Н	211	Rh	0.73		
О-Н	211	Ru	0.27		
O-HOH	211	Ag	2.65		
O-HOH	211	Cu	1.83		
O-HOH	211	Pd	2.28		
O-HOH	211	Pt	2.10		
O-HOH	211	Rh	1.03		
OH	211	Ag	0.49		
OH	211	Au	0.94		
OH	211	Cu	-0.04		
OH	211	Ni	-0.50		
OH	211	Pd	0.34		
OH	211	Pt	0.36		
OH	211	Rh	-0.37		
OH	211	Ru	-0.69		
OH-CH	211	Ag	4.97		
OH-CH	211	Cu	3.43		
OH-CH	211	Pd	2.78		
OH-CH	211	Pt	2.47		

OH-CH	211	Rh	1.69
OH-CH ₂	211	Ag	4.03
OH-CH ₂	211	Cu	3.01
OH-CH ₂	211	Pd	2.53
OH-CH ₂	211	Pt	2.10
OH-CH ₂	211	Rh	1.48
OH-CH ₃	211	Ag	2.76
OH-CH ₃	211	Cu	1.94
OH-CH ₃	211	Pd	2.11
OH-CH ₃	211	Pt	1.85
OH-CH ₃	211	Rh	1.13
OH-OH	211	Ag	1.98
OH-OH	211	Cu	1.07
OH-OH	211	Pd	1.72
OH-OH	211	Pt	1.76
OH-OH	211	Rh	0.50

Table SI-4 Computational details of the reference used for CatMAP data

Reference	Article	DFT	XC	Potential	Slab Size
		Method			
1.	<i>Energy Environ.</i> <i>Sci.</i> 3, 1311–1315 (2010)	DACAPO	RPBE	USPP	3×2×3 and 3 x 3 x 3 depending upon the adsorbate size
2.	<i>Top Catal.</i> 57, 135–142 (2014)	DACAPO	RPBE	USPP	3 x 1 for (211)
3.	<i>Phy. Rev. Lett.</i> 99, 016105 (2007)	DACAPO	RPBE	USPP	2 x 2 for 111 1 x 2 for 211
4.	Phys. Chem. Chem. Phys. 13, 20760–20765 (2011)	DACAPO	RPBE	USPP	2 x 2 for (111) 1 x 2, 2 x 2, and 2 x 3 for (211) surfaces depending on the size of the adsorbed molecules.
5.	J. Phys. Chem. C 113, 10548–10553 (2009)	DACAPO	RPBE	USPP	2 x 2 for (111) 2 x 1 for (211)
6.	Angew. Chem. Int. Ed. 47, 4835 – 4839 (2008)	DACAPO	RPBE	USPP	2 x 2 for (111) surface
7.	<i>Catal. Lett.</i> 141, 370–373 (2011)	DACAPO	RPBE	USPP	1 x 2 for (211)
8.	J. Catal, 293, 51– 60 (2012)	DACAPO	RPBE	USPP	1 x 3 for (211)
10.	J Catal. 374, 161–	Quantum	BEEF-	GBRV	3 x 2 for (111)

	170 (2019).	Espresso	vdW		
12.	Top Catal 57, 80– 88 (2014).	DACAPO	RPBE	USPP	2 x 2 for (111) 2 x 1 for (211)
13.	J. Am. Chem. Soc. 133, 5009–5015 (2007).	VASP	PW91	USPP	The metal slab for (111) with appropriate size with the supercell size was fixed during the optimization of the C clusters

SI-6 References

1. Peterson, A. A., Abild-pedersen, F., Studt, F., Rossmeisl, J. and Nørskov, J. K. *Energy Environ. Sci.* **3**, 1311–1315 (2010).

2. Medford, A. J., Lausche, A. C., Abild-Pedersen, F., Temel, B., Schjødt, N. C., Nørskov, J. K. and Studt, F. *Top Catal.* **57**, 135–142 (2014).

3. Gao, J., Yip, J., Zhao, J., Yakobson, B. I. and Ding, F. J. Am. Chem. Soc. 133, 5009–5015 (2007).

4. Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T. R., Moses, P. G., Skúlason, E., Bligaard, T. and Nørskov, J. K. *Phy. Rev. Lett.* **99**, 016105 (2007).

5. Wang, S., Petzold, V., Tripkovic, V., Kleis, J., Howalt, J. G., Skúlason, E., Fernández, E.M., Hvolbæk, B., Jones, G., Toftelund, A., Falsig, H., Björketun, M., Studt, F., Abild-Pedersen, F., Rossmeisl, J., Nørskov, J. K. and Bligaard, T. *Phys. Chem. Chem. Phys.* **13**, 20760–20765 (2011).

6. Jiang, T., Mowbray, D. J., Dobrin, S., Falsig, H., Hvolbæk, B., Bligaard, T. and Nørskov, J. K. J. Phys. Chem. C 113, 10548–10553 (2009).

7. Falsig, H., Hvolbæk, B., Kristensen, I. S., Jiang, T., Christensen, C. H. and Nørskov. J. K. Angew. Chem. Int. Ed. 47, 4835 –4839 (2008).

8. Wang, S., Temel, B., Shen, J., Jones, G., Grabow, L. C., Studt, F., Bligaard, T., Abild-Pedersen, F., Christensen, C. H. and Nørskov, J. K. *Catal. Lett.* **141**, 370–373 (2011).

10. Falsig, H., Shen, J., Khan, T. S., Guo, W., Jones, G., Dahl, S. and Bligaard, *Top Catal* 57, 80–88 (2014).