Supplementary Information

Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalysts under CO oxidation

Hanseul Choi,^{ac} Jinsun Lee,^{bd} Daeho Kim,^{ac} Ashwani Kumar,^{bd} Beomgyun Jeong,^e Ki-Jeong Kim,^f Hyoyoung Lee,^{*bd} and Jeong Young Park^{*ac}

 ^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
^bDepartment of Chemistry, Sungkyunkwan University, Suwon 440-746, Republic of Korea
^cCenter for Nanomaterials and Chemical Reactions, Institute for Basic Science, Daejeon 34141, Republic of Korea
^dCenter for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
^eAdvanced Nano Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
^fBeamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of Korea

Supplementary notes

Supplementary note 1: EPR analysis

To measure the Ti³⁺ sites $(3d^1, S = 1/2)$ and oxygen-based radicals, including oxygen anions and superoxide radical anions. EPR spectra was measured and shown in Figure S14. No EPR signal was measured with TiO₂ (P25). However, TiO_{2-x} showed two sets of EPR signal; lowfield peak and high-field peak. The low-field feature could be assigned to oxygen species and the hole trapped in oxygen anions, and high-field component is assigned to electrons trapped at Ti³⁺ centers. The signal at g= 1.911 originated from vacancy-stabilized Ti³⁺, and the signal at g₁₁=1.962, g₁₁=1.994 could be assigned to electrons trapped in localized states (Ti³⁺) in the anatase phase¹⁻³. A new signal at g=2.0102 appears with TiO_{2-x} and comes from a hole trapped at oxygen anions⁴. This is because, when the oxygen vacancies form in lattice, excess electrons can be generated, and the excess electrons are preferentially trapped in Ti⁴⁺ states to form Ti³⁺ states. Besides, the generated hole could be trapped in localized states (O²⁻) to form oxygen anions¹. The EPR results clearly support the formation of Ti³⁺ and oxygen vacancies.

Supplementary Tables

	BET	Pore	D4	
	surface area (m²/g)	volume (cm ³)	Pt loading (wt %)	
TiO ₂	51.5	0.13	0.7	
Blue TiO2	54.0	0.40	0.7	

Table S1 Physical properties of TiO₂, and blue TiO₂ supports and Pt loaded on the supports.

Table S2 H₂-TPR results of Pt deposited on TiO₂ and blue TiO₂ catalysts.

Pt/TiO ₂		Pt/blue TiO ₂	
Temperature (°C)	H ₂ consumption $(10^{-3} \text{ mmol g}^{-1})$	Temperature (°C)	H ₂ consumption $(10^{-3} \text{ mmol g}^{-1})$
74.2	32.1	89.8	54.5
333.9	4.7	340.3	16.5
591.1	5.0	457.2	12.0

	Ti-O before reaction (%)	Ti-O binding energy (before reaction) (eV)	Ti-O After reaction (%)	Ti-O binding energy (after reaction) (eV)
Pt/TiO ₂	69.1	529.8	40.7	529.9
Pt/blue TiO ₂	65.2	529.5	30.5	529.9

Table S3 Ratio of the lattice oxygen and the binding energy with Pt/TiO_2 and $Pt/blue TiO_2$ analyzed by XPS with Al K α .

Table S4 Ratio of the lattice oxygen of Pt/TiO_2 and $Pt/Blue TiO_2$ under UHV and during the CO oxidation reaction analyzed by NAP-XPS with 600 eV of hv.

	Ti-O	Ti - O	
	(UHV, %)	(CO oxidation, %)	
Pt/TiO ₂	53.7	10.2	
Pt/Blue TiO ₂	50.4	6.1	

Fig. S1 (a) Photograph of TiO_2 (Degussa) and (b) as-synthesized blue TiO_2 .

Fig. S2 (a) UV-Vis absorption spectra of TiO₂ and blue TiO₂ and (b) calculated band gap energy from UV-Vis absorption spectra.

Fig. S3 (a) Valence band XPS spectra of TiO₂ and blue TiO₂ and (b) calculated bandgap scheme.

Fig. S4 (a) High-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) image of Pt/blue TiO_2 and corresponding energy-dispersive X-ray spectroscopy (EDS) elemental mapping of (b) Ti, and (c) Pt. Particle size distribution of Pt nanoparticles on (d) TiO_2 and (e) blue TiO_2 before reaction.

Fig. S5 (a) XRD pattern of TiO_2 and blue TiO_2 . (b) Raman spectra of TiO_2 and blue TiO_2 and the inset is a magnification of the main peak located at 120-180 cm⁻¹.

Fig. S6 H_2 -TPR results of (a) TiO₂ and blue TiO₂ supports, and (b) Pt deposited on both supports.

Fig. S7 TEM image of (a) Pt/TiO₂ and (b) Pt/blue TiO₂ after CO oxidation reaction. The particle size distribution of Pt nanoparticles of (c) Pt/TiO₂ and (d) Pt/blue TiO₂ after the reaction.

Fig. S8 (a) Ti 2p, and (b) O 1s XPS spectra of Pt/TiO₂ and Pt/blue TiO₂ after the CO oxidation reaction. Deconvolution of Ti 2p spectra of (c) Pt/TiO₂ and (d) Pt/blue TiO₂.

Fig. S9 Deconvolution of O 1s XPS spectra for Pt/TiO₂ catalysts before CO oxidation reaction.

Fig. S10 (a) O 1s XPS spectra of Pt/TiO_2 and (b) $Pt/blue TiO_2$ catalysts after the CO oxidation reaction.

Fig. S11 (a) O 1s NAP-XPS spectra (hv = 600 eV) of Pt/TiO₂ under UHV, CO adsorption, and CO oxidation conditions. (b) Corresponding mass spectrometry spectra measured during the CO adsorption and oxidation; I: UHV, II: CO adsorption (0.2 mbar) at room temperature, III: CO oxidation (0.2 mbar of CO, and 0.5 mbar of O₂) at room temperature, CO oxidation at IV: 100 °C, V: 200 °C, VI: 250 °C, VII: 300 °C, VIII: 400 °C.

Fig. S12 In situ DRIFT contour image of (a) Pt/TiO₂ and (b) Pt/blue TiO₂ under CO flow (10 % CO/He) at elevated temperature. (b), and (d) DRIFT spectra at the temperature pointed by a triangle (100, 150, 200 °C) in contour map in (a), and (b), respectively. (e) CO₂ signal measured by MS under CO flow with Pt/blue TiO₂.

Fig. S13 Pt 4f XPS spectra with Pt/TiO_2 and $Pt/blue TiO_2$ catalysts before CO oxidation reaction.

Fig. S14 EPR spectra of blue TiO₂ (blue line), TiO₂ (P25, red line), and TiO₂ (Anatase phase (Sigma Aldrich), green line). The spectra were collected at 77 K.