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HER performance in H2SO4 and PBS solution

The HER performance of CFP-G@NF follows a similar pattern as in the KOH medium. 

The LSV curves in an acidic electrolyte (Fig. S6A) show that CFP-G@NF demonstrates the 

highest HER performance with the smallest overpotentials of 64 mV to acquire a current density 

of 10 mA/cm2 compared with CoP@NF (185 mV), CoFeP@NF (101 mV), and bare NF electrodes. 

As expected, the bare NF electrode without active materials reveals an insignificant response. In 

comparison to other reports, the CFP-G@NF catalyst illustrated superior catalytic performance, 

further revealing its good properties toward HER in an acidic medium (Fig. S6B).1-7 Besides, the 

obtained Tafel slope of CFP-G@NF (65 mV/dec) reflected in Fig. S6C is smaller than that of 

CoFe-P@NF (76 mV/dec), and CoP@NF (91 mV/dec), illustrating the superb electrocatalytic 

activity of CFP-G@NF in H2SO4 medium. The enhanced performance of CFP-G@NF toward 

HER in the acidic electrolyte was also revealed using its desirable stability. Hence, the stability of 

CFP-G@NF for HER was examined in detail by CV and chronopotentiometry techniques. As 

evidenced in Fig. S6D, after 2000 uninterrupted CV cycles at 100 mV s−1, the polarization plot of 

the CFP-G@NF is essentially unchanged, which implies that the CFP-G@NF possesses 

reasonable stability. Also, the durability of CFP-G@NF was also evaluated using 

chronopotentiometry at 10 mA/cm2 in a period of 12 h. From Fig. S6E, it can be discovered that 
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the CFP-G@NF catalyst indicates remarkable stability, displaying its satisfactory stability. We 

then tested HER performance of the CFP-G@NF in neutral solution (1 M PBS solution) to identify 

the good HER performance of our catalyst in a wide pH range. Fig. S7A reflects the polarization 

plots of the investigated CFP-G@NF electrode, together with the CoFe-P@NF, CoP@NF, and 

original NF electrodes in neutral media. Obviously, the original NF is not a favorable HER 

electrocatalyst. In stark contrast, the CFP-G@NF depicts satisfactory electrochemical activity 

yielding a current density of 10 mA/cm2 at 161 mV, demonstrating that its performance is better 

that of CoFeP@NF (216 mV) and CoP@NF (327 mV). Particularly, the HER performance of the 

CFP-G@NF electrode is better than several of the reported materials as depicted in Fig. S7B.3,6-10 

Fig. S7C represents the relevant Tafel curves of as-made catalysts. The Tafel slope of 98 mV/dec 

obtained for CFP-G@NF is lower than that of CoFe-P@NF (160 mV/dec) and CoP@NF (168 mV/ 

dec) in 1 M PBS. We also explored the stability of CFP-G@NF by CV analysis for 2000 cycles at 

100 mV s−1. After 2000 cycles, the shape of the LSV plot has no evident change as compared to 

the initial cycle (Fig. S7D). On the other hand, the durability of CFP-G@NF was evaluated through 

chronopotentiometry at 10 mA/cm2 for 12 h (Fig. S7E). It is noteworthy that the potential response 

of CFP-G@NF has no drastic decline with time, illustrating the distinguished durability of CFP-

G@NF in a neutral environment.
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Fig. S1 (A) Photograph of the CoFe-LDH@NF. (B and C) FE-SEM images of the CoFe-LDH@NF. (D) 

TEM image of the CoFe-LDH sample.

Fig. S2 Polarization LSV curves of the CoFeP with several stoichiometric ratios of the Co: Fe (2:1, 1:1, 

and 1:2) for HER in 1M KOH.
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Fig. S3. The comparative LSV curves of CFP-G@NF electrode with Pt wire and graphite rod.

Fig. S4 (A) CV curves of the CoFe-P@NF at various scan rates. (B) CV curves of the CFP-G@NF at 

various scan rates.

4



Fig. S5 Polarization curves for the CFP@NF before and after 2000th CV cycles for HER in 1 M KOH.

10 mA cm-2

Fig. S6 (A) HER polarization plots of CFP-G@NF, CoFe-P@NF, CoP@NF, and bare NF in .5 M H2SO4 
electrolyte. (B) Comparison of η at 10 mA/cm2 between CFP-G@NF and previous reports in acidic 
medium. (C) Related Tafel slops for CoP@NF, CoFe-P@NF, and CFP-G@NF. (D) The polarization plot 
for the CFP-G@NF before and after 2000th CV cycles in .5 M H2SO4. (E) chronopotentiometric 
measurement of CFP-G@NF toward HER at 10 mA/cm2 for 12 h in .5 M H2SO4.
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10 mA cm-2

Fig. S7 (A) LSV curves of the CFP-G@NF, CoFe-P@NF, CoP@NF, and bare NF for HER in 1 M PBS. 
(B) Comparison of η at 10 mA/cm2 between CFP-G@NF and previous reports in neutral medium. (C) Tafel 
plots of CFP-G@NF, CoFe-P@NF, and CoP@NF electrocatalysts in neutral medium. (D) The LSV plot 
for the CFP-G@NF before and after 2000th CV cycles in 1 M PBS. (E) chronopotentiometric measurement 
of CFP-G@NF toward HER at 10 mA/cm2 for 12 h in 1 M PBS.

Fig. S8 Polarization LSV curves of the CoFeP with several stoichiometric ratios of the Co: Fe (2:1, 1:1, 

and 1:2) for OER in 1M KOH.
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Fig. S9 Polarization curves for the CFP@NF before and after 2000th CV cycles for OER in 1 M KOH.

Fig. S10 EIS measurements of CoP@NF, CoFe-P@NF, and CFP-G@NF electrodes.
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Table S1. Comparison of the catalytic performance of the CFP-G@NF electrode with other previously 

reported electrodes.

Catalyst Current collector Electrolyte Catalyst 
morphology

Overpotential of 
HER for J=10 mA 
cm-2(mV)

Overpotential of 
OER for J=10 
mA cm-2(mV)

Ref

NiCoP Nickel foam 1 M KOH Nanoleaves 98 - 11

NiCoFeP@NiCoP Nickel foam 1 M KOH Pagoda-like 77 - 12

ip-CoP Carbon fiber 1 M KOH Nanowire 76 300 13

CoP Carbon Cloth 1 M KOH Nanoneedle 95 281 14

NiSe@CoP Nickel foam 1 M KOH Core-Shell 
Nanowires

91 - 15

NiCoP Nickel foam 1 M KOH Nanowire 104 277 16

Ni2P Nickel foam 1 M KOH Nanosheet 102 17

Cu-CoP Carbon cloth 1 M KOH Nanorod 81 18

Co5.0Mo1P/NiFe-LDH Nickel foam 1 M KOH Nanosheet 98.9 - 19

V doped CoP Carbon cloth 1 M KOH Nanowall 87 - 20

CFP-G Nickel foam 1 M KOH graphene 
encapsulated 
nanoneedles

71 260 This 
work 
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