Supporting information for

Modulating Oxidation State of Ni/CeO₂ Catalyst for Steam Methane Reforming: A Theoretical Prediction with Experimental Verification

Chan Wu^{a, b,1}, Zhourong Xiao^{a,1}, Li Wang^a, Guozhu Li^{a*}, Xiangwen Zhang^a, Lichang

Wang^{b*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China

^b Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale,

Illinois 62901, United States

¹ These authors contribute equally to this work.

Corresponding Authors

* gzli@tju.edu.cn

*lwang@chem.siu.edu

Experimental methods

Catalyst preparation

Synthesis of CeO₂: CeO₂ support was synthesized by a simple sol-gel method. Briefly, 5.332 g of Ce(NO₃)₃·6H₂O were first added into deionized water (20 ml) and stirred 30 min to obtain a dissolved solution. Then, 4.719 g of citric acid was added into the above solution. The solution was stirred for another 12 h at 60 °C. Then, a water bath was used to evaporate the residual. A spongy solid was obtained after drying for 12 h at 120 °C. The sample was then heated to 400 °C at a heating rate of 5 °C/min, and calcined at 400 °C for 4 h.

Synthesis of NiO/CeO₂: NiO/CeO₂ with a 10 wt% Ni content loading in the final catalyst were prepared by a traditional impregnation method. Typically, 1.101 g of Ni(NO₃)₂· $6H_2O$ was dissolved into deionized water (2 ml) and then mixed with the asprepared CeO₂ support (2.000 g) and kept at room temperature for 12 h, followed by drying at 120 °C for another 12 h and calcining at 600 °C for 4 h in static air.

Synthesis of NiO/CeO₂ with different ratios of Ni and NiO: In order to obtain different ratios of Ni and NiO, the as-prepared NiO/CeO₂ catalyst was treated at different reduction temperatures under H₂ atmosphere for 1 hour. NiO/CeO₂-364°C was the catalyst obtained after treating NiO/CeO₂ at 364 °C under H₂ atmosphere for 1 hour. The same method was adopted to synthesize NiO/CeO₂-600°C.

Characterization of the catalysts

The phase structure of the as-prepared catalysts was characterizated by XRD on a Rigaku D8-Focus diffractometer using the graphite filtered Cu K α radiation (λ = 1.54056 Å) with the 2 θ value ranging from 20° to 85°. H₂-TPR was performed on an AMI-300 apparatus. For the measurement of H₂-TPR, the sample (100 mg) was first pretreated at 400 °C by Ar (30 ml/min) for 1 hour. Then, the samples was cooled to 50

°C by air. Finally, the temperature of the furnace was heated from 50 °C to 900 °C at a ramp of 10 °C/min under the mixture of 10 vol% H₂-Ar (30 ml/min). X-ray photoelectron spectroscopy (XPS) was measured on an ESCALAB 250Xi spectrometer (Thermo Fisher Scientific) with an Al $K\alpha$ (hv = 1486.6 eV) X-ray source. The peak of C 1s (284.6 eV) was used as an internal reference to correct all spectra.

The reaction of methane steam reforming

The reaction of methane steam reforming was carried out in a fixed-bed reactor (6 mm ID) at atmospheric pressure. 0.15 g of the catalyst (20 - 40 mesh) was diluted with SiC (1.2 g) and loaded in the tubular reactor. Before reaction, the catalyst was prereduced in situ in a flow of H₂ (50 ml/min) at certain temperature (364 °C or 600 °C) for 1 h. For instance, in order to obtain NiO/CeO₂-364°C, the pristine NiO/CeO₂ was pre-reduced in situ in a flow of H₂ (50 ml/min) at 364 °C for 1 h. Then, water was pumped into reactor, and CH_4/N_2 (Vol(CH₄)/Vol(N₂) = 1:1) were simultaneously injected into the reactor. Water was vaporized completely and mixed with CH₄ and N₂ in the heated chamber (300 °C). The flows of steam and methane had an H₂O/CH₄ of 2. The reaction temperature was controlled by three K-type thermocouples centering in the furnace to maintain stable reaction temperature. The produced gas was analyzed by an on-line gas chromatograph (Varian Micro-GC 490) equipped with three columns (PPU column, activated alumina column and 5Å molecular sieve column) and a TCD detector. The flow rate of nitrogen was fixed (60 ml/min) in each experiment. Thus, the production rate of H₂, CO, CO₂ and CH₄ can be calculated according to the content of nitrogen. The conversion of methane and formation rate of gas products were calculated using the following equations.

Methane conversion (wt%) =
$$\frac{F_{cH4}^{in} - F_{cH4}^{out}}{F_{cH4}^{in}} \times 100$$
 (1)

H₂ selectivity (%) =
$$\frac{F_{H_2}^{out}}{4*F_{cH_4}^{in}} \times 100$$
 (2)

Gas product rate (umol/min) $R(H_2) = \frac{A_{H_2} \cdot f_{H_2}}{A_{N_2} \cdot f_{N_2}} \times R(N_2)$ (3)

A is the peak area, which was obtained from gas chromatograph. f is the response factor, which was determined by the property of gas species. R is the gas flow rate.

Figure S1 Left: Charge density difference (ρ_{diff}) between -3.2×10^{-3} (blue, deficit) and 3.2×10^{-3} (yellow, accumulation) e/Bohr³. Right: The electron localization function (ELF) maps of Ni atom, top atom layers of O and Ce in CeO₂ between -0.02(dark blue, deficit) and 0.02 (red, accumulation) for Py-Ni₄/CeO₂, Pl-Ni₄/CeO₂ and Ni₄O₁/CeO₂. Coloring scheme: grey (Ni), red (O), yellow (Ce).

Figure S2. Configurations of the initial state (IS), transition state (TS), and final state (FS) of the C-O bond formation for R1 pathway (CH*+O*-CHO*, in the black frame) and R2 pathway (CH*+OH*-CHOH*, in the red frame) on Ni(111), Py-Ni₄/CeO₂, and Pl-Ni₄/CeO₂. The C-O bond distances of IS, TS and FS are given in Å. Coloring scheme: dark blue (Ni), red (O), yellow (Ce), white (H) and grey (C).

Figure S3. The structures of Ni₃/CeO₂, Ni₃O₃/CeO₂, and Ni₄O₄/CeO₂. The Bader charge of Ni atoms was labeled nearby. "+" represents the loss of electrons. The values of NiO/(Ni+NiO) ratio (R) were provided below the figures. Coloring scheme: dark blue (Ni), red (O), yellow (Ce⁴⁺) and light green (Ce³⁺).

Figure S4. The structures of Ni_4O_x (x = 0-4), Ni_3O_y (y = 0-3) and NiO in gas phase. Coloring scheme: dark blue (Ni), red (O).

	Gas cluster				Supported on CeO ₂		
	Magnetic Moment			Magnetic N			
cluster	R	Ni (u _b /atom)	Ni-NiO cluster	Ni (µ _b /atom)	Ni-NiO cluster	Binding energy	Ce ⁴⁺ to Ce ³⁺
		(10 -)	(μ_b)		(μ_b)	(eV)	
Ni ₃	0	1.62	4.85	1.07	3.22	-5.86	2
Ni ₃ O ₁	0.33	0.59	1.84	1.06	3.41	-6.83	2
Ni ₃ O ₂	0.67	0.49	1.77	0.77	2.53	-5.50	1
Ni ₃ O ₃	1	0.41	1.91	0.49	1.69	-3.38	0
Py-Ni ₄	0	0.85	3.40	0.54	2.15	-6.63	2
Pl-Ni ₄	0	0.97	3.87	1.08	4.32	-6.29	2
Ni ₄ O ₁	0.25	0.89	3.74	0.88	3.62	-7.29	2
Ni ₄ O ₂	0.50	0.81	3.64	0.77	3.54	-6.69	2
Ni ₄ O ₃	0.75	0.77	3.68	0.33	1.75	-5.14	2
Ni ₄ O ₄	1	0.67	3.79	0.32	1.81	-2.97	2
NiO	1	1.11	1.83	-0.03	0.06	-2.81	0

Table S1 Magnetic moment of Ni atom (μ_b /atom) and total Ni-NiO clusters (μ_b) of Ni-NiO clusters in gas phase and supported on CeO₂; binding energy (eV) and the number Ce⁴⁺ to Ce³⁺ for Ni-NiO clusters supported on CeO₂

R = NiO/(Ni+NiO)

Figure S5. Configurations of the initial state (IS), transition state (TS), and final state (FS) of CH4* dehydrogenation on CeO₂(111) supported Ni₄O_x (x=2-3), Ni₃O_y (y=1-2) and NiO. The C-H bond distances of TS are given in Å. Coloring scheme: dark blue (Ni), red (O), yellow (Ce), white (H) and grey (C).

Figure S6. Configurations of the initial state (IS), transition state (TS), and final state (FS) of C-O bond formation on CeO₂(111) supported Ni₄O_x (x=1-3), Ni₃O_y (y=1-2). The C-O bond distances of TS are given in Å. Coloring scheme: dark blue (Ni), red (O), yellow (Ce), white (H) and grey (C).

Figure S7. (a) H₂-TPR profiles, (b) XRD patterns, (c) Ni 2p XPS spectra, and (d) O 1s XPS spectra of the fresh catalysts or the spent catalysts.

Figure S8. Ni 2p XPS spectrum of the spent NiO/CeO₂-364°C. Reaction conditions: 700°C, $H_2O/CH_4 = 2$, gas hourly space velocity (GHSV) of 20000 g/ml·h, reaction time of 1500 min.