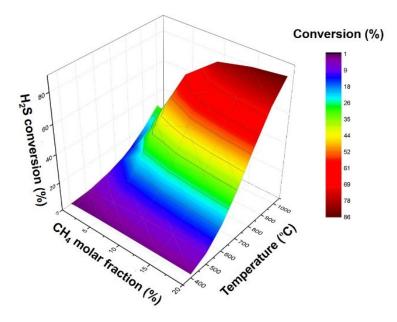
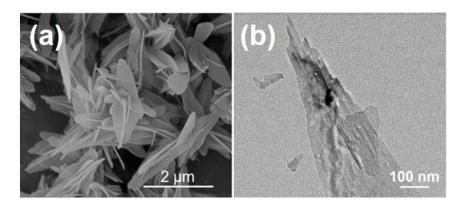
Sulfidation of MoO_3/γ -Al₂O₃ towards highly efficient catalyst for CH_4 reforming with H_2S


Hao Wang^a, Jingxian Wu^a, Zhihuang Xiao^a, Zhejie Ma^a, Ping Li^{a,*}, Xinwei Zhang^b, Hongying Li^b, Xiangchen Fang^b

 ^a State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
^b Dalian Petrochemical Research Institute, SINOPEC, Dalian 116045, Liaoning, China


*Corresponding author. *E-mail address:* lipingunilab@ecust.edu.cn (P. Li)

Supporting Information

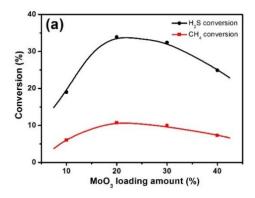

Fig. S1 illustrates certain results of our previous study (Ref. [24]), which we obtained using AspenPlus software in light of the principle of minimum Gibbs free energy. The conditions set for reaction equilibrium calculation were 15 mol% H₂S and 0.1 MPa while changing the CH₄ molar fraction from 0 to 20 mol% (balanced with N₂) and the temperature from 400 to 1000 °C in a isothermal isobaric Gibbs reactor. Amorphous carbon was selected as a product of CH₄ dissociation. The results show that the addition of CH₄ can significantly increase the equilibrium conversion of H₂S, especially when the molar ratio of CH₄/H₂S is below the reformation stoichiometric ratio, i.e. 1/2. Furthermore, the increment greatly depends on reaction temperature, and high temperature is beneficial to H₂S conversion.

Fig. S1. Equilibrium conversion of 15 mol% H_2S as functions of CH_4 molar fraction (0 - 20 mol%) and temperature (400 – 1000 °C). Other conditions: 0.1 MPa in a isothermal isobaric Gibbs reactor, simulated using AspenPlus software based on the principle of minimum Gibbs free energy (Ref. [24]).

Fig. S2. Morphology of γ -Al₂O₃ synthesized. (a) SEM image showing clustered nanosheets architecture, and (b) typical TEM image of a piece of γ -Al₂O₃ nanosheet.

Fig. S3. Conversions of H₂S and CH₄ as a function of MoO₃ weight loading supported on γ -Al₂O₃ in CH₄/H₂S reforming process. Sulfidation condition: 600 °C, 1 h. Reaction conditions: CH₄/H₂S/N₂ = 1.5:1:7.5 (vol), 800 °C, 1 atm and GHSV = 20000 h⁻¹.

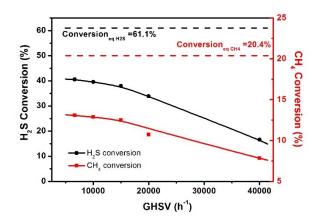
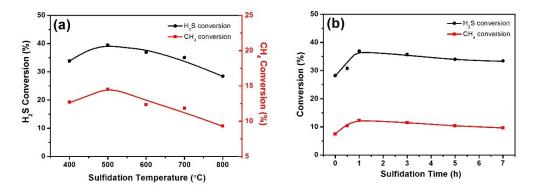
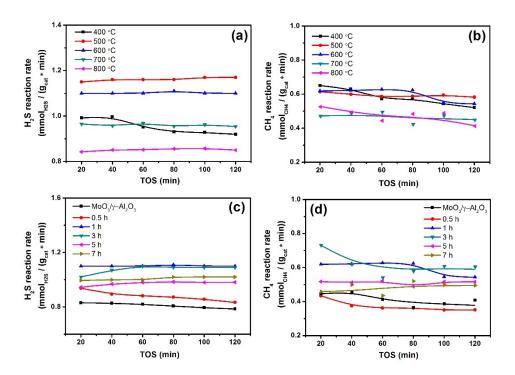
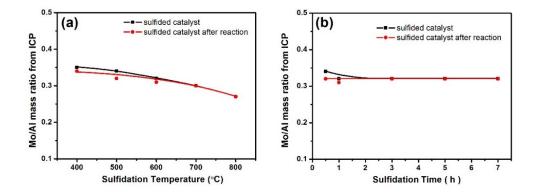
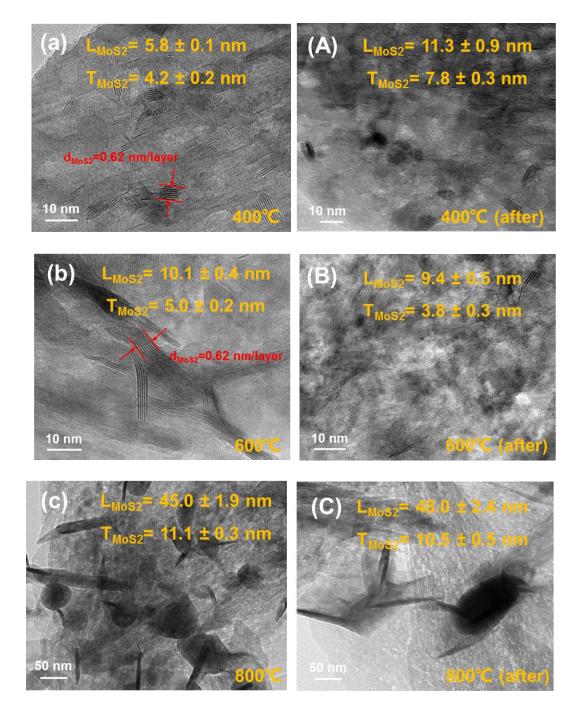




Fig. S4. Conversions of H₂S and CH₄ as a function of GHSV in CH₄/H₂S reforming process. Sulfidation


condition: 600 °C, 1 h. Reaction conditions: $CH_4/H_2S/N_2 = 1.5:1:7.5$ (vol), 800 °C, 1 atm. Two dotted lines present the equilibrium conversions of CH_4 and H_2S under the corresponding conditions.


Fig. S5. Conversions of H_2S and CH_4 as a function of (a) sulfidation temperature and (b) time over 20 wt% MoO₃/Al₂O₃ catalyst (repetitive test for Figs. 1(a) and 5(a), respectively).

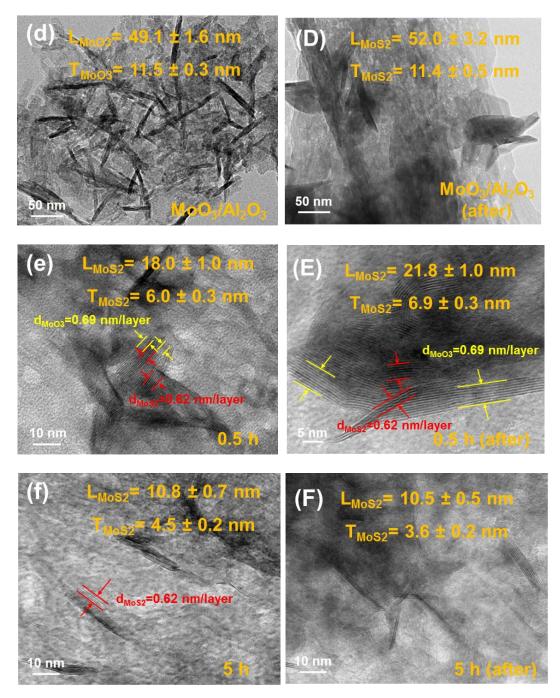


Fig. S6. Conversions of H₂S and CH₄ changing with the time on stream (TOS) in 2 h for the MoO₃/ γ -Al₂O₃ catalyst sulfurized at different temperatures with 1 h (a, b) and sulfurized with different time at 600 °C (c, d).

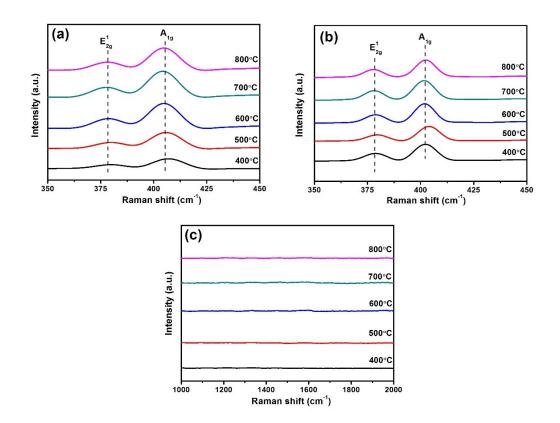
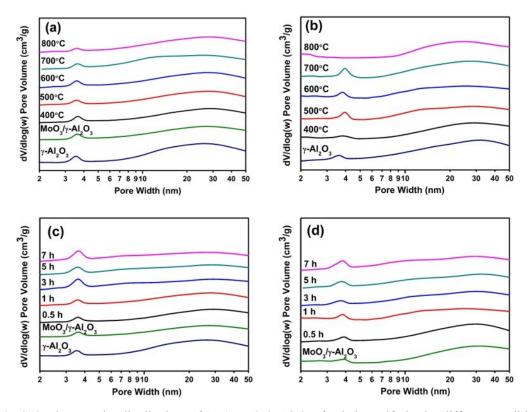


Fig. S7. Mo/Al mass ratio of sulfurized MoO_3/γ -Al₂O₃ catalyst before and after reaction as a function of (a) sulfidation temperature and (b) sulfidation time.


Fig. S8. TEM images of the MoO_3/γ -Al₂O₃ catalyst sulfurized at different temperatures with 1 h (a, b, c), the corresponding catalyst after the reaction (A, B, C), and sulfurized with different time at 600 °C (d, e, f), the corresponding catalyst after the reaction (D, E, F). The letter *L* represents the mean length of MoS_2 slabs and *T* is the mean thickness of MoS_2 slabs.

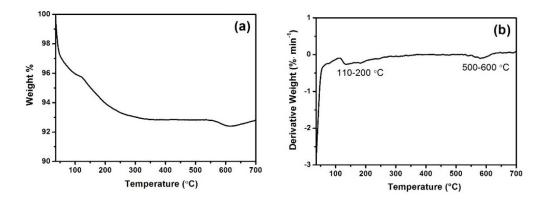
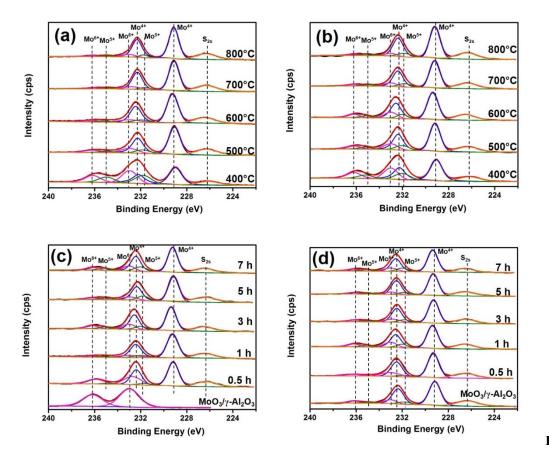

Fig. S9. Raman spectra of (a) 20 wt% MoO_3/Al_2O_3 after being sulfurized at different temperatures for 1 h, (b) the corresponding sulfurized samples after 2 h reaction test at 800 °C, and (c) the spectra in a range of 1000 – 2000 cm⁻¹ for the samples of (b).

Table S1. Raman peak parameters of MoO_3/Al_2O_3 sample sulfurized at different temperatures before and after the reaction.


Sulfidation condition (temperature, time)	Sulfided catalyst				Sulfided catalyst after reaction			
	E ¹ _{2g} (cm ⁻¹)	A _{1g} (cm ⁻¹)	Differenc e (cm ⁻¹)	stacking number	E ¹ _{2g} (cm ⁻¹)	A _{1g} (cm ⁻¹)	Differenc e (cm ⁻¹)	stacking number
400 °C, 1 h	380.03	406.65	26.62	7	379.15	402.23	23.08	13
500 °C, 1 h	380.03	406.65	26.62	7	379.15	404.00	24.85	6
600 °C, 1 h	378.25	404.88	26.62	7	379.15	402.23	23.08	7
700 °C, 1 h	378.25	404.88	26.62	10	377.37	402.23	24.85	12
800 °C, 1 h	378.25	404.88	26.62	16	377.37	402.23	24.85	16

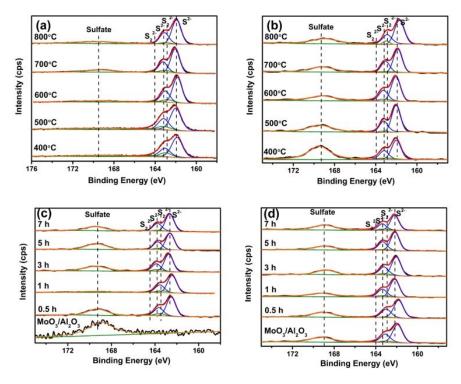

Fig. S10. The pore size distributions of (a, c) MoO_3/γ -Al₂O₃ after being sulfurized at different conditions, and (b, d) the corresponding sulfurized samples after 2 h reaction test at 800 °C. The pore size distributions of the untreated MoO_3/γ -Al₂O₃ sample before and after the reaction and the γ -Al₂O₃ support are also included.

Fig. S11. (a) TGA curve and (b) corresponding DTG curve obtained under air flow for the γ -Al₂O₃ sample after reaction test at 800 °C for 2 h.

g. S12. XPS Mo 3d spectra of the MoO_3/γ -Al₂O₃ catalyst sulfurized at different temperatures with 1 h before (a) and after (b) the reaction, and sulfurized with different time at 600 °C before (c) and after (d) the reaction.

Fig. S13. XPS S 2p spectra of the MoO_3/γ -Al₂O₃ catalyst sulfurized at different temperatures with 1 h before (a) and after (b) the reaction, and sulfurized with different time at 600 °C before (c) and after (d) the reaction.

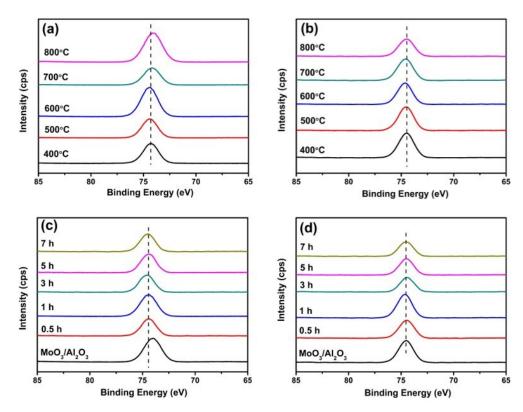
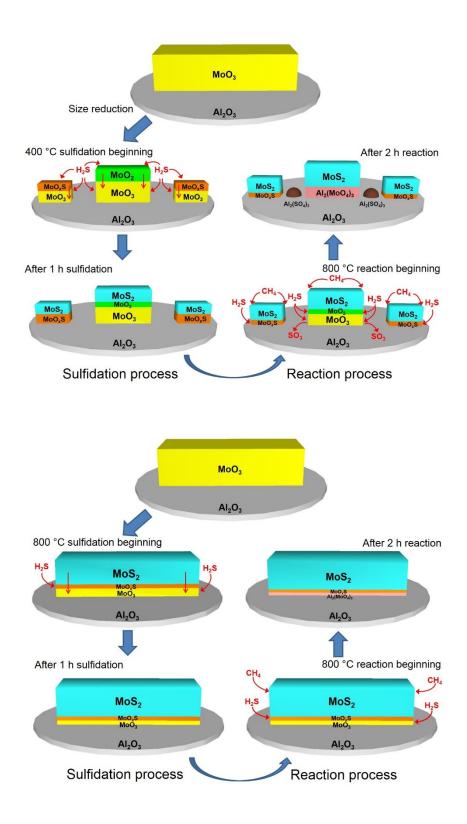



Fig. S14. XPS Al 2p spectra of the MoO_3/γ -Al₂O₃ catalyst sulfurized at different temperatures with 1 h before (a) and after (b) the reaction, and sulfurized with different time at 600 °C before (c) and after (d) the reaction.

Samples	Sulfidation condition	Reaction condition	Feed flow	Residence Time (GHSV)	Catalyst weight (volume)	H_2S conversion (%) and reaction rate (mmol/g _{cat} ·min)	CH ₄ conversion (%) and reaction rate (mmol/g _{cat} ·min)	H_2 production rate (mmol/g _{cat} ·min)	Ref.
MoO ₃ /Al ₂ O ₃	100 ml/min, 20%H ₂ S/N ₂ , 500 °C, 1 h	800 °C,	100 ml/min,	0.24 s (15000 h ⁻¹)	0.16 g (0.4 ml)	39.7%, 1.16	13.2% 0.59	1.82	This study
MoO ₃ /Al ₂ O ₃	100 ml/min, 20%H ₂ S/N ₂ , 600 °C, 1 h	1 atm	CH ₄ /H ₂ S/N ₂ =1.5:1:7.5			37.9% 1.10	12.5% 0.54	1.73	
MoS ₂	-	790 °C, 1 atm	180 ml/min, CH ₄ /H ₂ S=0.479:0.521	1.65 s	6.74 g (4.95 ml)	31.7%, 0.20	-	0.33	[17]
Mo/La ₂ O ₃ - ZrO ₂	5.95 L/h H ₂ S /6.84 L/h N ₂ , 450 °C, 4 h	850 °C, 1 atm	0.189 L/h CH ₄ , 2.268 L/h H ₂ S	1.46 kg _{cat} ·h/mol _{CH4}	3 g	44%, 0.93	97%, 0.18	-	[29]

 $\textbf{Table S2.} The catalytic performance of MoO_3/\gamma-Al_2O_3 sample sulfurized at optimal conditions and the results derived from citations for comparison.$

Fig. S15. Schematic illustration of substance transformation of MoO_3/γ -Al₂O₃ during the sulfidation at 400 °C (upper) or 800 °C (below) for 1 h followed by the reaction at 800 °C for 2 h.



Fig. S16. The atomic model of the MoS_2 slab adopted from Refs. [71, 72] for edge Mo atom fraction calculation.

References

[17] S. K. Megalofonos and N. G. Papayannakos, *Int. J. Hydrogen Energy*, 1991, 16, 319-327.

[24] Y. Y. Li, H. Gen, X. Cui, X. Liu, X. Z. Xie and P. Li, *Chem. Eng. Oil & Gas*, 2016, **45**, 32-37. (In Chinese)

[29] A. L. Martinez Salazar, J. A. Melo Banda, J. M. Dominguez Esquivel, V. H. Martinez Sifuentes, Y. Salazar Cerda, M. A. Coronel Garcia and M. A. Meraz Melo, *Int. J. Hydrogen Energy*, 2015, **40**, 17354-17360.

[71] J.V. Lauritsen, M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nørskov, B.S. Clausen, H. Topsøe, F. Besenbacher, *J. Catal.*, 2004, **221**, 510-522.

[72] A.S. Walton, J.V. Lauritsen, H. Topsoe, F. Besenbacher, *J. Catal.*, 2013, **308**, 306-318.