Supporting Information

Hydrolysis of Amides to Carboxylic Acids Catalyzed by Nb₂O₅

S. M. A. Hakim Siddiki,^{†*} Md. Nurnobi Rashed,[†] Abeda Sultana Touchy,[†] Md. A. R. Jamil, [†] Yuan Jing,[†] Takashi Toyao,^{†,‡} Zen Maeno,[†] Ken-ichi Shimizu^{*†,‡}

[†] Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
 [‡] Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan.

*Corresponding authors

S. M. A. Hakim Siddiki, Ken-ichi Shimizu

E-mail: hakim@cat.hokudai.ac.jp, kshimizu@cat.hokudai.ac.jp

Experimental:

General

Commercially available inorganic and organic compounds were purchased from TCI (Tokyo Chemical Industry), Sigma Aldrich, Wako Pure Chemical Industries, Kishida Chemical, or Mitsuwa Chemicals and were used without further purification. The GC (Shimadzu GC-14B) and GCMS (Shimadzu GCMS-QP2010) analyses were conducted using an Ultra ALLOY capillary column UA⁺-1 (Frontier Laboratories Ltd.) with N₂ and He as carrier gases. ¹H and ¹³C NMR spectra were recorded at ambient temperature on JEOL-ECX 600 and 400 instruments operating at 600.17 and 150.92 MHz and at 395.88 and 99.54 MHz respectively with dimethyl sulfoxide (DMSO) as an internal standard.

Catalyst preparation

Different Nb₂O₅ samples were prepared by calcination of Nb₂O₅·*n*H₂O (HY-340, provided by CBMM, Brazil) at 200 °C, 500 °C, 700 °C, and 1000 °C for 3h in air prior to use. CeO₂, supplied from Daiichi Kigenso Kagaku Kogyo Co., Ltd (Type A), was calcined at 600 °C for 3 h. TiO₂ (JRC-TIO-8) and MgO (JRC-MGO-3) were supplied by the Catalysis Society of Japan. γ -Al₂O₃ was prepared by calcination of γ -AlOOH (Catapal B Alumina, Sasol) at 900 °C for 3 h. SiO₂ (Q-10) was supplied by Fuji Silysia Chemical Ltd. ZnO was prepared by calcination (*T* = 500 °C, *t* = 3 h) of Zn(OH)₂ (Kishida Chemical). ZrO₂ was prepared by calcining Zr(OH)₄ at 773 K for 3 h, which was made *via* hydrolysis of Y(NO₃)₃ • 6H₂O, ZrO(NO₃)₂ • 2H₂O with an aqueous NH₄OH solution. SnO₂ was prepared from H₂SnO₃ (Kojundo Chemical Laboratory Co., Ltd.) by calcination at 500 °C for 3 h. CaO was prepared by calcination of Ca(OH)₂ (Kanto Chemical) at 500 °C for 3 h. La₂O₃, Ce(NO₃)₄, *p*-toluenesulfonic acid, and H₂SO₄ were supplied by Wako Pure Chemical Industries, Japan. The Sc(OTf)₃ (>98%) was obtained from TCI Co. Ltd., and Zr(SO₄) • 4H₂O (≥99%) was supplied from Alfa Aesar, Ward Hill, China. Montmorillonite K10 clay (mont. K10), sulfonic resin Nafion-SiO₂ composite, and ammonium niobate(V) oxalate hydrate (C₄H₄NNbO₉ • xH₂O) were purchased from Sigma-Aldrich.

Catalyst characterization

X-ray diffraction (XRD; Rigaku MiniFlex) patterns of the powdered catalysts were recorded using Cu-K α radiation (λ = 1.5418 Å). The N₂ adsorption measurements were obtained over AUTOSORB 6AG (Yuasa Ionics Co.). X-ray photoelectron spectroscopy (XPS) of the catalysts was performed using a JEOL JPS-9010MC spectrometer (Mg-K α irradiation). Binding energies were calibrated with respect to C_{1s} at 285.0 eV. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis was done with a Shimadzu ICPE-9000 instrument to investigate the heterogeneous nature of Nb₂O₅ catalysts.

IR studies

In situ IR spectra were recorded using a JASCO FT/IR-4200 with an MCT (mercury-cadmiumtelluride) detector. The Nb₂O₅ sample (40 mg) was pressed to obtain a self-supporting pellet (ϕ = 2 cm), which was placed in the quartz IR cell with CaF₂ windows connected to a conventional gas flow system. Spectra were obtained by accumulating 15 scans at a resolution of 4 cm⁻¹. A reference spectrum taken at the adsorption measurement temperature (120 °C) under He flow was subtracted from each spectrum.

For acetamide adsorption experiments, the sample pellet was heated under He flow (100 cm³ min⁻¹) at 300 °C for 0.5 h prior to the measurement. After cooling to 120 °C under the He flow, 1 μ L acetamide was injected into each sample through a line which was preheated at *ca*. 200 °C to vaporize it.

For pyridine adsorption experiments, the sample was activated at 200 °C for 0.5 h under He flow (100 cm³ min⁻¹) and then cooled down to 120 °C. Subsequently, 1 μ L pyridine was introduced. The amount of adsorbed probe molecule was determined using the integrated area of bands typical of the coordinated (Lewis) or protonated (Brønsted) forms at 1445 and 1540 cm⁻¹, respectively, using previously determined molar absorption coefficients.¹

Typical procedure for catalytic reactions

Amide **1a** (1 mmol), water (5 mmol), and a magnetic stirrer bar were placed in a reaction tube followed by addition of N₂ through the septum inlet. The standard amount of catalyst used was 50 mg. The temperature controller was set at 120 °C to maintain reflux conditions during the reaction. Yields of products were determined by GC with *n*-dodecane as the internal standard. GC sensitivities were estimated using commercial compounds or isolated products. In substrate scope studies, products were isolated using column chromatography on silica gel 60 (spherical, 40–100 µm, Kanto Chemical Co. Ltd.) using hexane/ethyl acetate (10:1 to 16:1, v/v) as the eluting solvent, followed by ¹H and ¹³C NMR spectroscopy in combination with GC-MS equipped with the same column as that used for GC-FID analyses. For recycling experiments, after each catalytic cycle, 2-propanol (3 mL) was added into the reaction mixture. The catalyst was separated and washed twice with acetone (3 mL) followed by water (3 mL). The catalyst was then dried at 110 °C for 5 h and used.

Supplementary results:

Figure S1. Thermodynamic equilibrium of acetamide conversion in hydrolysis of acetamide to acetic acid calculated using HSC Chemistry 9.0 software. The reaction $C_2H_5NO + H_2O(I) = C_2H_4O_2(a) + NH_3(a)$ was examined with a water/acetamide ratio = 5.

Figure S2. XRD patterns of Nb₂O₅ catalysts calcined at different temperatures.

Figure S3. N₂ adsorption isotherms of Nb₂O₅ catalysts calcined at different temperatures.

Figure S4. IR spectra of pyridine adsorption on Nb₂O₅ catalysts calcined at different temperatures. The spectra were measured at 200 °C.

Figure S5. Comparison of the role of Lewis and Brønsted acid sites of catalysts on hydrolysis of acetamide. Reaction conditions: acetamide 1 mmol, water 5 mmol, catalysts 50 mg, T = 120 °C, t = 20 h (final yield determination), 2 h (initial rate determination).

NMR and GC/MS analyses:

¹H and ¹³C NMR spectra of the products were assigned and confirmed by literature values. ¹H and ¹³C NMR spectra were recorded at ambient temperature on a JEOL-ECX 600 instrument operating at 600.17 MHz and 150.92 MHz, respectively, and a JEOL-ECX 400-2 instrument operating at 399.78 MHz and 100.52 MHz, respectively. Abbreviations used in the NMR experiments: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC-MS spectra were obtained using a Shimadzu QP2010 instrument.

Acetic acid:²

```
Н<sub>3</sub>С Он
2а
```

Yield 91%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.94 (s, 1H), 1.89 (s, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 172.18, 21.12; GC-MS m/z: 60.05.

Propionic acid:³

Yield 90%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.95 (s, 1H), 2.22-2.18 (m, 2H), 0.98 (t, *J* =7.56 Hz, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 175.27, 26.94, 9.13; GC-MS m/z: 74.05.

Hexanoic acid:⁴

п-С₆Н₁₃ ОН

Yield 84%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.96 (s, 1H), 2.18 (t, *J* =7.56 Hz, 2H), 1.51-1.42 (m, 2H), 1.32-1.19 (m, 4H), 0.85 (t, *J* =7.08 Hz, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 174.52, 33.65, 30.80, 24.21, 21.87, 13.84; GC-MS m/z: 116.15.

Tetradecanoic acid:5

n-C₁₃H₂₇OH

Yield 77%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.96 (s, 1H), 2.17 (t, *J* =7.56 Hz, 2H), 1.48-1.42 (m, 2H), 1.29-1.19 (m, 20H), 0.85 (t, *J* =7.05 Hz, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 174.50, 33.67, 31.31, 30.81, 29.03 (C×2), 28.92, 28.75, 28.72 (C×2), 28.56, 24.50, 22.11, 13.96; GC-MS m/z: 228.35.

Heptadecanoic acid:6

n-C₁₇H₃₅

Yield 86%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.68 (s, 1H), 2.18 (t, *J* =7.56 Hz, 2H), 1.54-1.49 (m, 2H), 1.34-1.19 (m, 28H), 0.86 (t, *J* =6.87 Hz, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 173.85, 33.40, 30.90, 30.80, 28.61 (C×2), 28.49 (C×2), 28.31 (C×2), 28.26 (C×2), 28.21 (C×2), 24.17, 21.65, 13.42; GC-MS m/z: 270.45.

Phenylacetic acid:⁷

Yield 88%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.32 (s, 1H), 7.30 (t, *J* =7.44 Hz, 2H), 7.27-7.21 (m, 3H), 3.56 (s, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 172.75, 135.06, 129.40 (C×2), 128.26 (C×2), 126.61, 40.72; GC-MS m/z: 136.15.

3-Phenyl-acrylic acid:8

Yield 84%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.46 (s, 1H), 7.65 (t, *J* =8.22 Hz, 2H), 7.62 (t, *J* =8.12 Hz, 1H), 7.40-7.361 (m, 3H), 6.54 (t, *J* =8.012 Hz, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.80, 144.09, 134.39, 130.32, 129.02 (C×2), 128.31 (C×2), 119.38; GC-MS m/z: 148.15.

2-(Naphthalen-1-yl)acetic acid:8

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.43 (s, 1H), 7.97 (d, *J* =8.10 Hz, 1H), 7.92 (d, *J* =8.04 Hz, 1H), 7.84 (d, *J* =8.04 Hz, 1H), 7.58-7.351 (m, 2H), 7.48-7.34 (m, 2H), 4.04 (s, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 172.78, 133.34, 131.89, 131.69, 128.46, 128.01, 127.40, 126.18, 125.72, 125.54, 124.04, 38.50; GC-MS m/z: 186.20.

Cyclohexanecarboxylic acid:5

Yield 95%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.94 (s, 1H), 2.20-2.15 (m, 1H), 1.82-1.76 (m, 2H), 1.68-1.62 (m, 2H), 1.59-1.531 (m, 2H), 1.33-1.14 (m, 5H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 176.75,

42.28, 28.73, 25.52 (C×2), 25.01 (C×2); GC-MS m/z: 128.15.

2-Hydroxypropanoic acid:9

н₃С↓↓Он ОН

2j

Yield 88%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.35 (br s, 1H), 5.24 (br s, 1H), 4.09-4.05 (m, 1H), 1.26 (d, *J* =6.60 Hz, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 177.42, 66.83, 21.51; GC-MS m/z: 90.10.

Propionic acid:10

Yield 91%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.01 (br s, 1H), 1.10 (s, 9H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 179.37, 37.92, 27.01 (C×3); GC-MS m/z: 102.15.

Adamantane-1-carboxylic acid:11

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.97 (s, 1H), 1.94 (br s, 9H), 1.78 (s, 6H), 1.68-1.62 (m, 5H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 178.44, 38.49 (C×4), 36.04 (C×3), 30.71 (C×2), 27.38; GC-MS m/z:180.25.

Malonic acid:12

Yield 82%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.60 (br s, 2H), 3.23 (s, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 168.50 (C×2), 41.99; GC-MS m/z: 104.05.

Note: Amides **1n-1r** generate acetic acid **2a** as the corresponding hydrolyzed product shown in Scheme 2.

Benzoic acid:11

4a

Yield 87%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.96 (s, 1H), 7.94 (d, *J* =8.04 Hz, 2H), 7.61 (t, *J* =6.87 Hz, 2H), 7.49 (t, *J* =6.87 Hz, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.50, 133.02, 130.93, 129.44 (C×2), 128.73 (C×2); GC-MS m/z: 122.10.

4-Methylbenzoic acid:¹²

Yield 80%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.79 (s, 1H), 7.83 (d, *J* =7.68 Hz, 2H), 7.26 (d, *J* =7.68 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.41, 143.08, 129.41, 129.17, 128.12 (C×2), 21.17; GC-MS m/z: 136.15.

3-Methylbenzoic acid:5

Yield 76%; ¹H NMR (600.17 MHz, DMSO-d6): δ 10.83 (s, 1H), 8.28 (d, *J* =8.22 Hz, 2H), 7.94 (d, *J* =8.14 Hz, 2H), 1.73 (s, 9H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.42, 137.90, 133.46, 130.74, 129.74, 128.46, 126.46, 20.82; GC-MS m/z: 136.15.

4-tert-Butylbenzoic acid:13

Yield 77%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.87 (s, 1H), 7. 7.61 (d, *J* =8.10 Hz, 2H), 6.53 (d, *J* =8.10 Hz, 2H), 5.86 (br s, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.27, 155.21, 130.37 (C×2), 127.83, 125.82 (C×2), 35.23, 31.44 (C×3); GC-MS m/z: 178.25.

4-Aminobenzoic acid:¹⁴

Yield 81%; ¹H NMR (600.17 MHz, DMSO-d6): δ 11.96 (br s, 1H), 7.79-7.71 (m, 2H), 7.42 (d, *J* =7.32 Hz, 1H), 7.39-7.34 (m, 1H), 2.35 (s, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.59, 153.21, 131.31(C×2), 116.93, 112.63 (C×2); GC-MS m/z: 137.15.

4-Hydroxybenzoic acid:15

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.48 (br s, 1H), 10.27 (br s, 1H), 7.83 (d, *J* = 8.28 Hz, 2H), 6.85 (d, *J* = 8.28 Hz, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 168.17, 162.58, 132.53, 122.32, 116.10; GC-MS m/z: 137.10.

2-Hydroxybenzoic acid:15

Yield 81%; ¹H NMR (600.17 MHz, DMSO-d6): δ 14.00 (br s, 1H), 11.30 (br s, 1H), 7.78 (d, *J* =6.85 Hz, 1H), 7.52-7.48 (m, 1H), 6.96-7.91 (m, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 171.95, 161.14, 135.69, 130.28, 119.21, 117.11, 112.66; GC-MS m/z: 137.10.

3-Fluorobenzoic acid:¹⁶

4h

Yield 80%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.29 (br s, 1H), 7.77 (d, *J* =7.08 Hz, 1H), 7.64 (d, *J* =8.22 Hz, 1H), 7.57-7.51 (m, 1H), 7.46 (t, *J* =7.56 Hz, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.25, 162.02 (d, *J* =244.20 Hz) 133.30 (d, *J* =6.03Hz), 130.82 (d, *J* =6.03 Hz), 125. 48, 119.89 (d, *J* =20.23 Hz), 115.79 (d, *J* =22.63 Hz); GC-MS m/z: 140.10.

4-Fluorobenzoic acid:¹⁶

Yield 84%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.17 (br s, 1H), 7.92 (d, *J* =8.07 Hz, 2H), 7.52 (d, *J* =8.07 Hz, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.53, 137.87, 131.19, 129.69, 128.77 (C×2); GC-MS m/z: 156.55.

4-Methoxybenzoic acid:¹²

H₃CO

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 12.62 (s, 1H), 7.85 (d, *J* =8.75 Hz, 2H), 7.00 (d, *J* =8.75 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.01, 162.85, 131.36 (C×2), 122.83, 113.82 (C×2), 55.45; GC-MS m/z: 152.15.

3-(Trifluoromethyl)benzoic acid:17

Yield 84%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.54 (s, 1H), 8.21 (d, J =7.02 Hz, 1H), 8.16 (s, 1H), 7.97 (d, J =8.10 Hz, 1H), 7.74 (d, J =7.56 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.06, 133.23, 132.04, 130.07, 129.46(d, J = 24.14 Hz), 129.35 (d, J = 4.33 Hz), 125.54 (d, J = 4.33 Hz), 123.83 (d, J = 271.65 Hz); GC-MS m/z: 190.10

4-Nitrobenzoic acid:⁵

Yield 76%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.66 (s, 1H), 8.30 (d, J =7.98 Hz, 1H), 8.15 (d, J =7.98 Hz, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.83, 150.05, 136.38, 130.72 (C×2), 123.74 (C×2); GC-MS m/z: 167.10.

Naphthalen-2-carboxylic acid:¹⁶

Yield 86%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.10 (br s, 1H), 8.61 (s, 1H), 8.10 (d, J = 7.98 Hz, 1H), 8.01-7.94 (m, 3 H), 7.64 (t, J = 7.44 Hz, 1H), 7.59 (d, J = 7.44 Hz, 1H), 7.57 (t, J = 7.56 Hz, 1H),; ¹³C NMR (150.92 MHz, DMSO-d6) δ 167.49, 134.96, 132.18, 130.56, 129.31, 128.35, 128.20, 128.10 (C×2), 127.68 (C×2), 126.84, 125.20; GC-MS m/z: 172.15.

Naphthalen-1-carboxylic acid:¹¹

4n

Yield 82%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.15 (br s, 1H), 8.85 (d, J =7.98 Hz, 1H), 8.14 (d, J =6.90 Hz, 2H), 8.01 (d, J =6.84 Hz, 1H), 7.63 (t, J =7.22 Hz, 1H), 7.58 (d, J =7.82 Hz, 2H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 168.66, 133.47, 132.95, 130.68, 129.87, 128.62, 127.52, 126.20, 124.89; GC-MS m/z: 172.15.

Nicotinic acid:16

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.43 (br s, 1H), 8.77 (d, J = 7.56 Hz, 1H), 8.25 (d, J =8.04 Hz, 1H), 7.52 (t, J = 8.04 Hz, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.34, 153.32, 150.29, 137.02, 126.63, 123.85; GC-MS m/z: 123.10.

Thiophene-2-carboxylic acid:¹⁸

Yield 85%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.04 (br s, 1H), 7.90-7.86 (m, 1H), 7.72 (d, *J* =7.02 Hz, 1H), 7.18 (t, *J* =6.54 Hz, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 162.94, 134.67, 133.30, 133.25, 128.25; GC-MS m/z: 128.15.

Furan-2-carboxylic acid:¹⁹

Yield 85%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.08 (br s, 1H), 7.94 (s, 1H), 7.24 (d, *J* = 4.14 Hz, 1H), 6.68-6.67 (m, 1H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 160.32, 148.05, 145.88, 118.72, 113.10; GC-MS m/z: 112.10.

Terephthalic acid:20

Yield 83%; ¹H NMR (600.17 MHz, DMSO-d6): δ 13.29 (br s, 2H), 8.05 (s, 4H); ¹³C NMR (150.92 MHz, DMSO-d6) δ 166.74 (C×2), 134.50(C×2), 129.53 (C×4); GC-MS m/z: 166.15.

Note: Amides **3s-3w** generate benzoic acid **4a** as the corresponding hydrolyzed product shown in section (B) of Scheme 4.

REFERENCES

- 1 M. Tamura, K. Shimizu and A. Satsuma, "Applied Catal. A, Gen., 2012, 433–434, 135–145.
- 2 Q. J. Yan, S. Q. Yang, X. J. Duan, H. B. Xu, Y. Liu and Z. Q. Jiang, *J. Mol. Catal. B Enzym.*, 2014, **109**, 76–84.
- 3 Y. Hirai, T. Kojima, Y. Mizutani, Y. Shiota, K. Yoshizawa and S. Fukuzumi, *Angew. Chemie*, 2008, **120**, 5856–5860.
- 4 H. Tsunoyama, T. Tsukuda and H. Sakurai, *Chem. Lett.*, 2007, **36**, 212–213.
- 5 A. T. Murray, P. Matton, N. W. G. Fairhurst, M. P. John and D. R. Carbery, *Org. Lett.*, 2012, **14**, 3656–3659.
- 6 O. Itsenko and B. Långström, J. Org. Chem., 2005, 70, 2244–2249.
- 7 J. C. Lee, E. S. Yoo and J. S. Lee, *Synth. Commun.*, 2004, **34**, 3017–3020.
- 8 T. Osako, R. Kaiser, K. Torii and Y. Uozumi, *Synlett*, 2019, **30**, 961–966.
- 9 S. M. A. H. Siddiki, A. S. Touchy, K. Kon, T. Toyao and K. Shimizu, *ChemCatChem*, 2017, **9**, 2816–2821.
- 10 C. J. Salomon, E. G. Mata and O. A. Mascaretti, J. Org. Chem., 1994, 59, 7259–7266.
- 11 V. Cherepakhin and T. J. Williams, ACS Catal., 2018, **8**, 3754–3763.

- 12 S. M. A. H. Siddiki, T. Toyao, K. Kon, A. S. Touchy and K. Shimizu, *J. Catal.*, 2016, **344**, 741–748.
- 13 K. Lee, Y. H. Kim, S. B. Han, H. Kang, S. Park, W. S. Seo, J. T. Park, B. Kim and S. Chang, *J. Am. Chem. Soc.*, 2003, **125**, 6844–6845.
- 14 C. Wiles, P. Watts and S. J. Haswell, *Tetrahedron Lett.*, 2006, **47**, 5261–5264.
- 15 D. Sang, C. Yi, Z. He, J. Wang, J. Tian, M. Yao and H. Shi, *Tetrahedron Lett.*, 2018, **59**, 1469–1472.
- 16 H. M. Liu, L. Jian, C. Li, C. C. Zhang, H. Y. Fu, X. L. Zheng, H. Chen and R. X. Li, *J. Org. Chem.*, 2019, **84**, 9151–9160.
- 17 N. Iqbal, S. Choi, Y. You and E. J. Cho, *Tetrahedron Lett.*, 2013, **54**, 6222–6225.
- 18 L. Han, P. Xing and B. Jiang, *Org. Lett.*, 2014, **16**, 3428–3431.
- 19 P. Sathyanarayana, A. Upare, O. Ravi, P. R. Muktapuram and S. R. Bathula, *RSC Adv.*, 2016, **6**, 22749–22753.
- 20 T. Nakai, T. Iwai, M. Mihara, T. Ito and T. Mizuno, *Tetrahedron Lett.*, 2010, **51**, 2225–2227.

X : parts per Million : 1H

	H ₃ C		
6.0	он ОН 2 ј	PROCE dc_balance sexp : 2.0 trapezoid3 zerofil1 : fft : 1 : machinepta ppm	SSING PARAMETERS : 0 : FALSE [Hz] : 0.0[s] : 0[%] : 80[%] : 100[%] 1 TRUE : TRUE se
5.0		Derived fr	om: Exp-AB-R-124-6c-C-1.jdf
4.0		Filename Author Experiment Sample_id Solvent Creation_f Revision_t Current_t:	= Exp-AB-R-124-6c-C-4.j = delta = single_pulse_dec = Exp-AB-R-124-6c-C = DMSO-D6 :ime = 1-SEP-2020 16:19:40 :ime = 1-SEP-2020 16:26:08 :me = 1-SEP-2020 16:26:22
3.0		Comment Data_form Dim_size Dim_title Dim_units Dimension Site Spectrome	= Exp-AB-R-124-6c-C it = 1D COMPLEX = 26214 = 13C = [ppm] s = X = ECA 600 ter = DELTA2_NMR
2.0		Field_str X_acq_dur X_domain X_freq X_offset X_points X_prescan X_resolut	<pre>sngth = 14.09636928[T] (600[M ation = 0.69206016[s] = 13C = 150.91343039[MHz] = 100[ppm] = 32768 s = 4 ion = 1.44496109[Hz] = 47 34848485[KHz]</pre>
1.0		X_sweep Irr_domai Irr_freq Irr_offse Clipped Mod_retur Scans Total_sca	a = 1H = 600.1723046[MHz] t = 5[ppm] = FALSE n = 1 = 43 ns = 43
abundance 0		X_90_widt X_acq_tim X_angle X_atn X_pulse Irr_atn_c Irr_atn_r	h = 12.3[us] e = 0.69206016[s] = 30[deg] = 7.5[dB] = 4.1[us] lec = 18.62[dB] oe = 18.62[dB]
	220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 Irr_noise = WALT2 220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 Decoupling = TRUE Initial_wait = 1[s] Noe = TRUE Noe_time = 2[s] Noe_time = 60		g = TRUE ait = 1[s] = TRUE = 2[s] n = 60
•	77.4267	66.8381 6.8381 6.8381 6.8381 8.0.73640 8.0.756400 8.0.756400 8.0.756400 8.0.756400 8.0.756400 8.0.756400 8.0.7564000000000000000000000000000000000000	n_delay = 2[s] n_time = 2.69206016[s] = 21.7[dC]
	X : parts per Million : 13C		

HO OH 2m	· · · · · · · · · · · · · · · · · · ·	PROCESSING PARAMETERS dc_balance : 0 : FALSE sexp : 2.0[Hz] : 0.0[S] trapezoid3 : 0[%] : 80[%] : 100[%] zerofil1 : 1 fft : 1 : TRUE : TRUE machinephase ppm Derived from: Exp-R-184-5-C-1.jdf
r č		Filename = Exp-R-184-5-C-3.jdf Author = delta Experiment = single_pulse_dec Sample_id = Exp-R-184-5-C Sample_id = Exp-R-184-5-C
5.0	•	Solvent = 18-APR-2019 16:45:24 Creation_time = 18-APR-2019 16:50:30 Current_time = 18-APR-2019 16:50:30 Current_time = 18-APR-2019 16:50:44 Comment = Exp-R-184-5-C Data_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = [Dpm]
		Dimensions = X Site = ECA 600 Spectrometer = DELTA2_NMR Field_strength = 14.09636928[T] (600[M X_acq_duration = 0.69206016[s] X_domain = 13C X_freq = 150.91343039[MHz] X_offset = 100[[ppm]
10		<pre>X_points = 32768 X_prescans = 4 X_resolution = 1.44496109[Hz] X_sweep = 47.34848485[kHz] Irr_domain = 1H Irr_freq = 600.1723046[MHz] Irr_offset = 5[ppm] Clipped = FALSE Mod_return = 1</pre>
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		0 -10.0 -20.0 Irr_atn_noe = 18.62[dB] Irr_noise = WALTZ Decoupling = TRUE Initial_wait = 1[s] Noe = TRUE Noe_time = 2[s] Recvr_gain = 60 Relaxation_delay = 2[s]
168.5016	41.9903 39.5200 39.3766	Repetition_time = 2.69206016[s] Temp_get = 21.5[dC]

X : parts per Million : 1H

3.0	С 4q				PROCESSING PARAMETERS dc_balance : 0 : FALSE sexp : 2.0[Hz] : 0.0[s] trapezoid3 : 0[%] : 80[%] : 100[%] zerofill : 1 fft : 1 : TRUE : TRUE machinephase ppm Derived from: Exp-AB-R-124-13-C-1.jdf	:
1.0 2.0					Filename = Exp-AB-R-124-13-C- Author Author = delta Experiment = single_pulse_dec Sample_id = Exp-AB-R-124-13-C Solvent = DMSO-D6 Creation_time = 31-AUG-2020 11:38: Revision_time = 31-AUG-2020 11:44: Current_time = 31-AUG-2020 11:44: Current_time = 31-AUG-2020 11:44: Comment = Exp-AB-R-124-13-C Data_format = 1D COMPLEX Dim_size = 26214 Dim_title = 13C Dim_units = [ppm] Dimensions = X Site = ECA 600 Spectrometer DELTA2_NMR Field_strength = 14.09636928[T] (60 X_acc_duration = 0.69206016[s] X_domain = 13C X_freq = 150.91343039[MHz] X_offset = 100[ppm] X_points = 32768 X_prescans = 4 X_resolution = 1.44496109[Hz] X_sweep = 47.34848485[kHz] Irr_offset = 5[ppm] Irr_offset =	3.j 39 51 55
abundance 0	220.0 210.0 200.0 190.0 180.0 170	.0 160.0 150.0 140.0	130.0 120,0 110.0 100.0	90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20	<pre>X_90_width = 12.3[us] X_acq_time = 0.69206016[s] X_angle = 30[deg] X_atn = 7.5[dB] X_pulse = 4.1[us] Irr_atn_dec = 18.62[dB] Irr_noise = WALTZ Irr_noise = WALTZ Decoupling = TRUE Initial_wait = 1[s] Noe = TRUE</pre>	
	X · parts per Million : 13C	160.3262	118.7238	40.5936 40.5936 40.3160	Noe_time = 2[s] Recvr_gain = 60 Relaxation_delay = 2[s] Repetition_time = 2.69206016[s] Temp_get = 22.2[dC]	

