Ethanol conversion over Ga₂O₃–ZrO₂ solid solution: empirical evidences of the reaction pathway, the surface acid–base property, and role of gallium ion

Takashi Yamamoto^{1,2,*}, Akihito Kurimoto², Riona Sato², Shoki Katada¹, Hirotaka Mine¹, Naoto Tanima², and Ryota Kamata²

¹Department of Natural Science, Faculty of Science and Technology, Tokushima University, Tokushima 770-8506, Japan

²Department of Mathematical and Material Sciences, Faculty of Integrated Arts and Sciences,

Tokushima University, Tokushima 770-8502, Japan

[†]To whom correspondence should be addressed.

E-mail: takashi-yamamoto.ias@tokushima-u.ac.jp

 Table S1:
 Results of ethanol conversion at different contact time and reaction temperature.

T = 573K																
GHSV	Conv.	Yield (%)													
/h ⁻¹	(%)	CH ₄	DEE	C2	C2'	C3'	AcH	1-,2-C4'	iso-C4	' 1,3-C4"	AcMe	AcOH	AcOEt	C3,4-ol	C4-al	CO ₂
96,109	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26,492	0.7	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0
9,515	1.2	0.0	0.0	0.0	0.1	0.0	0.5	0.0	0.1	0.0	0.1	0.0	0.3	0.0	0.0	0.0
4,746	2.1	0.0	0.0	0.1	0.1	0.0	0.7	0.0	0.3	0.0	0.5	0.0	0.5	0.0	0.0	0.0
1,315	8.8	0.0	0.0	0.1	0.5	0.2	1.1	0.0	0.4	0.0	2.1	0.0	0.8	0.8	0.0	2.9
238	24.6	0.0	0.0	0.0	1.1	1.7	1.3	0.0	0.5	0.1	6.6	0.2	0.6	3.9	0.1	8.5
T = 623 K																
GHSV	Conv	Yield (%)													
/h ⁻¹	(%)		DEE	C2	C2'	C3'	AcH	1- 2-C4'	iso-C4	' 1 3-C4"	AcMe	AcOH	AcOFt	C3 4-ol	C4-al	COa
96 109	1.5	0.0	0.0	0.0	0.1	0.0	0.7	0.0	0.3	0.0	0.2	0.0	0.1	0.0	0.0	0.0
26 492	5.7	0.0	0.0	0.0	0.5	0.0	1.9	0.0	0.9	0.0	1.9	0.0	0.4	0.0	0.0	0.0
9 515	12.8	0.0	0.0	0.1	0.0	0.0	3.0	0.0	1.3	0.0	3.9	0.0	0.7	0.0	0.0	2.9
4 746	23.4	0.0	0.0	0.0	17	0.1	4.2	0.0	2.6	0.0	84	0.0	0.7	0.0	0.0	5.2
1 315	73.4	0.0	0.0	0.0	4 1	5.6	19	0.0	0.1	0.0	30.0	13	0.0	1.0	2.5	26.5
238	98.9	0.4	0.0	0.0	5.0	16.1	0.0	0.1	2.0	0.6	30.7	2.0	0.0	0.0	4.2	37.8
T = 673 K																
GHSV	Conv.	Yield (%)													
/h ⁻¹	(%)	CH_4	DEE	C2	C2'	C3'	AcH	1-,2-C4'	iso-C4	' 1,3-C4"	AcMe	AcOH	AcOEt	C3,4-ol	C4-al	CO ₂
96,109	11.9	0.0	0.0	0.0	1.3	0.1	3.4	0.0	1.5	0.0	5.3	0.0	0.3	0.0	0.0	0.0
26,492	51.5	0.0	0.0	0.0	3.9	1.1	5.2	0.1	1.6	0.2	22.6	0.1	0.3	1.1	0.5	14.9
9,515	75.4	0.0	0.0	0.0	5.1	2.5	4.2	0.0	3.6	0.6	32.4	0.9	0.0	1.6	1.4	23.2
4,760	100.0	0.0	0.0	0.1	6.0	5.0	1.8	0.0	1.5	0.0	42.2	1.3	0.0	2.3	2.4	37.4
1,315	99.5	1.3	0.0	0.0	7.3	8.0	0.0	0.0	6.7	0.3	37.9	2.0	0.0	1.3	2.5	32.3
238	98.9	5.5	0.0	0.0	6.9	12.6	0.0	0.1	14.0	0.0	13.5	2.1	0.0	0.0	4.2	40.1
T = 723 K																
GHSV	Conv.	Yield (%)													
/h ⁻¹	(%)	CH ₄	DEE	C2	C2'	C3'	AcH	1-,2-C4'	iso-C4	' 1,3-C4"	AcMe	AcOH	AcOEt	C3,4-ol	C4-al	CO ₂
96,109	50.9	0.1	0.0	0.0	4.3	1.5	5.3	0.1	2.8	0.0	20.7	0.1	0.2	0.0	0.4	15.6
26,492	92.7	0.7	0.0	0.0	6.3	5.0	1.8	0.7	2.4	0.0	44.6	0.1	0.0	0.6	0.5	29.7
9,515	98.4	1.7	0.0	0.0	6.3	5.5	0.6	0.6	5.0	0.0	44.2	0.2	0.0	0.6	0.7	33.0
4,746	99.6	5.0	0.1	0.0	6.6	7.2	0.0	0.1	10.7	0.0	32.9	0.0	0.0	0.5	0.0	36.5
1,315	99.8	9.6	0.0	0.0	7.1	11.3	0.0	0.0	22.1	0.0	4.7	0.4	0.0	0.1	1.5	42.9
238	99.5	12.0	0.0	0.0	5.7	11.6	0.0	0.0	22.2	0.0	0.4	0.0	0.0	0.0	0.8	46.9
T - 770 K																
1 = 773 K	Conv	Viold (24.)													
0H3V /L-1	(0/)			<u></u>	<u></u>	<u>C2</u>	۸aЦ	1 2 04	ine C4	1 2 04"	AcMo			C2 4 al	C1 al	<u> </u>
/n ·	(%)		DEE	0.2	C2	0.0	ACH	1-,2-04	150-04	1,3-04	Acivie	ACUH	ACUEL	03,4-01	04-ai	002
90,109	11.5	0.9	0.0	0.0	1.Z	∠.ŏ	0.1	0.0	D.∠	0.0	∠ŏ.5	0.1	0.0	0.0	0.5	∠U.3 25 4
20,492	97.0 100.0	0.4 10.7	0.0	0.0	0.0 5.0	5.3	0.0	0.4	9.1 14 E	0.0	34.0 22.2	0.1	0.0	0.0	0.3	30. I
9,015	100.0	10.7	0.0	0.0	5.ŏ	5.0 7.5	0.1	0.1	14.5	0.0	22.3 67	0.1	0.0	0.0	0.3	40.0
4,740	100.0	17.9	0.0	0.0	0.0	1.5	0.0	0.0	10.4	0.0	0.7	0.0	0.0	0.0	0.2	40.0
1,310	100.0	19.3	0.0	0.0	1.2	ວ.ຽ 5.0	0.0	0.0	19.0	0.0	0.3	0.2	0.0	0.0	0.2	40.0
230	99.7	19.0	0.0	0.0	3.9	J.Ö	0.0	U. I	21.3	0.0	0.2	0.0	0.0	0.0	0.1	49.3
~ .	-			-										~		-

Catalyst: Ga₂O₃–ZrO₂ 0.05–4 g; ethanol: 5%; H₂O: 40%; N₂: balance; total flow rate: 20 or 100 mL·min⁻¹. Conv.: ethanol conversion. AcH: acetaldehyde; AcMe: acetone; AcOEt: ethyl acetate; AcOH: acetic acid; C2–C3: sum of ethane and propane; C2': ethene; C3': propene; 1-, 2-C4': sum of 1- and 2-butenes; iso-C4': isobutene; 1,3-C4'': 1,3-butadiene; C4-al: butenals; C4-ol: butanols/butenols; DEE: diethyl ether.

Doped-	Conv.	Yield (%	6)													
element	(%)	CH_4	DEE	C2	C2'	C3'	AcH	1-,2-C4	' iso-C4'	1,3-C4"	AcMe	AcOH	AcOEt	C3,4-ol	C4-al	CO ₂
-	0.5	0.0	0.0	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ca	0.5	0.0	0.0	0.0	0.4	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sc	0.4	0.0	0.0	0.1	0.3	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ti	0.6	0.0	0.1	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V	6.1	0.0	0.9	0.0	2.5	0.0	2.2	0.0	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.0
Cr	0.4	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Mn	0.7	0.0	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0
Fe	0.5	0.0	0.0	0.0	0.3	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Co	0.6	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0
Ni	1.9	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.1	0.0	0.7	0.0	0.0	0.0
Cu	11.5	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.2	0.0	0.7	0.0	0.3	0.1
Zn	5.2	0.0	0.0	0.1	0.1	0.0	1.9	0.0	0.0	0.0	1.6	0.0	0.7	0.0	0.0	0.8
Ga	1.9	0.0	0.0	0.0	0.1	0.0	0.9	0.0	0.0	0.0	0.1	0.0	0.8	0.0	0.0	0.0

 Table S2:
 Results of ethanol conversion catalyzed by metal ion-doped ZrO₂.

T = 723 K

T = 573 K

Doped-	Conv.	Yield (%	6)													
element	(%)	CH_4	DEE	C2	C2'	C3'	AcH	1-,2-C4	'iso-C4'	1,3-C4"	AcMe	AcOH	AcOEt	C3,4-ol	C4-al	CO ₂
-	98.3	0.3	0.1	0.0	83.6	10.3	0.0	0.1	0.0	0.0	1.1	0.0	0.0	0.0	0.0	4.5
Ca	98.5	0.5	0.1	0.0	85.6	8.1	0.0	0.2	0.0	0.0	1.2	0.0	0.0	0.0	0.0	4.2
Sc	97.9	0.2	0.1	0.0	76.7	14.1	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	7.9
Ti	94.0	0.9	0.8	0.0	70.2	16.3	0.7	0.6	0.2	0.0	1.8	0.1	0.0	1.3	0.0	7.1
V	97.3	1.3	0.0	34.9	16.5	9.9	0.0	0.2	1.0	0.0	14.1	0.0	0.0	0.7	0.2	21.1
Cr	99.4	10.7	0.3	0.0	31.8	8.6	0.0	0.0	1.3	0.0	23.9	0.0	0.0	0.2	0.0	23.2
Mn	98.4	1.2	0.1	0.0	52.8	20.9	0.0	0.3	0.3	0.0	10.8	0.0	0.0	0.0	0.0	13.6
Fe	99.2	1.5	0.4	0.0	34.6	23.6	0.0	0.0	1.3	0.0	19.5	0.0	0.1	0.4	0.0	18.5
Co	99.3	1.0	0.0	0.0	22.2	7.9	0.1	0.1	5.7	0.0	39.5	0.0	0.0	0.1	0.0	23.3
Ni	98.2	1.5	0.0	0.0	9.4	3.2	0.3	0.2	7.4	0.0	51.0	0.0	0.0	0.0	0.0	27.0
Cu	98.5	0.3	0.5	0.0	55.9	26.4	0.2	0.0	0.0	0.0	4.1	0.0	0.0	0.6	0.0	11.9
Zn	97.8	4.3	0.0	0.0	3.5	3.6	0.0	0.0	35.0	0.0	19.9	0.0	0.0	0.4	0.2	33.1
Ga	99.5	3.6	0.0	0.0	4.6	4.1	0.0	0.0	17.5	0.0	39.4	0.0	0.0	0.4	0.0	30.5

Catalyst: 0.2 g; ethanol: 5%; H₂O: 40%; N₂: balance; total flow rate: 20 mL·min⁻¹.

T. Yamamoto, et al.

Fig. S1. Dependence of ionic radius of doped metal cation to ZrO_2 on *d*-values of the tetragonal/cubic phase. The ionic radius was taken from reference ¹ for six-fold coordination.

1. R. D. Shannon, Acta Crystallogr. A, 1976, 32, 751-767.

Fig. S2. Dependence of space velocity on ethanol conversion at 573 - 773 K. Catalyst: Ga₂O₃– ZrO₂ 0.05–4 g; ethanol: 5%; H₂O: 40%; N₂: balance; total flow rate: 20 or 100 mL·min⁻¹. Conv.: conversion of ethanol; AcH: acetaldehyde; AcMe: acetone; AcOEt: ethyl acetate; AcOH: acetic acid; C2-C3: sum of ethane and propane; C2′ : ethene; C3′ : propene; 1-, 2-C4′ : sum of 1and 2-butenes; iso-C4′ : isobutene; 1,3-C4″ : 1,3-butadiene; C4-al: butenals; C4-ol: butanols/butenols; DEE: diethyl ether.