Supporting Information

Effects of Morphology and Heteroatom Doping of CeO$_2$ Support on the Hydrogenation Activity of Pt Single-Atoms

Yanfu Ma, Xiaohui Zhang, Lina Cao, Junling Lu*

Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China).

* To whom correspondence should be addressed: E-mail: junling@ustc.edu.cn
Fig. S1. Aberration-corrected HAADF-STEM images of Pt$_1$/NO$_3$-CeO$_2$-sphere (A) and Pt$_1$/PO$_4$-CeO$_2$-sphere (B) at low magnifications.
Fig. S2. STEM images of Pt$_1$/NO$_3$-CeO$_2$-sphere (A) and the corresponding EDS mapping of Pt (B), O (C), N (D) and Ce (E) for the area marked by the green rectangle in (A).
Fig. S3. Effect of recycle time on the catalytic performance of Pt/NO$_3$-CeO$_2$-sphere.
Fig. S4. The effect of calcination time on the activity (A) and styrene selectivity (B) of Pt/NO$_3$-CeO$_2$-sphere in phenylacetylene hydrogenation.
Fig. S5. Gaseous decomposition products from the temperature-programed decomposition of platinum tetraaminonitrate (A) and NO$_3$-CeO$_2$ (B) in a He atmosphere as determined by mass spectroscopy.
Fig. S6. DRIFTS of CO chemisorption on Pt$_1$/NO$_3$-CeO$_2$-sphere-250, Pt$_{cluster}$/NO$_3$-CeO$_2$-sphere and Pt$_{cluster}$/CeO$_2$-sphere.
Fig. S7. TEM images of (A) Pt\textsubscript{cluster}/NO\textsubscript{3}-CeO\textsubscript{2}-sphere and (B) Pt\textsubscript{cluster}/CeO\textsubscript{2}-sphere. Pt nanoparticles are highlighted by white circles.
Fig. S8. Fitting curve between ln(Rate) of Pt SACs and ln(H₂ pressure/bar) under different H₂ pressures.