Electronic Supplementary Information

Donor-acceptor Covalent Organic Framework/g-C₃N₄ Hybrids for Enhanced Visible Light Photocatalytic H₂ Production

Chenxiang Lin,^a Chaozheng Han,^a Lei Gong,^a Xin Chen,^a Jinxia Deng, ^a Dongdong

Qi,^a Yongzhong Bian,^a Kang Wang,^a and Jianzhuang Jiang^{ab}

^a Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, and Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China

^b Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.

List of Tables and Figures

- 1 Experimental section.
- 2 Fig. S1 The photocatalytic H₂ evolution activity of x-TBTA/g-C₃N₄ (x = 0, 1.0, 2.5, 5.0, 7.5, 10.0, 100).
- **3** Fig. S2 TEM images of (a) 1.0-TBTA/g-C₃N₄. (b) 5.0-TBTA/g-C₃N₄. (c) 7.5-TBTA/g-C₃N₄ and (d) 10.0-TBTA/g-C₃N₄.
- 4 Fig. S3 FTIR spectra of TBTA, 2.5-TBTA/C₃N₄, and g-C₃N₄.
- **5** Fig. S4 FTIR spectra of as-synthesized samples.

6 Fig. S5 The UV-vis diffuse reflectance absorption spectra (DRS) of samples.

7 Table S1. Absorption spectroscopic data and energy levels.

8 Fig. S6 (a) MS plots of 2.5-TBTA/g-C₃N₄ and (b) Energy levels of TBTA, 2.5-

TBTA/g- C_3N_4 and g- C_3N_4 .

9 Fig. S7 (a) The photocatalytic H_2 evolution activity with different catalyst amounts of 10-TBTA/g-C₃N₄. (b) The photocatalytic H_2 evolution activity with different sacrificial reagants of TBTA. (c) Time dependent photocatalytic H_2 production with AA as asacrificial reagents. (d) Long-term stability for H_2 production of 2.5-TBTA/g-C₃N₄-Pt.

10 Fig. S8 (a) The photocatalytic H_2 evolution rate of 2.5-TBTA/g-C₃N₄ with monochromatic light irradiations. (b) Wavelength-dependent photocatalytic H_2 evolution rate and DRS spectrum of 2.5-TBTA/g-C₃N₄.

11 Table S2. Comparison of the performance of photocatalytic H₂ evolution rate of organic semiconductor/g-C₃N₄ hybrids with Pt as co-catalysts.

- 12 Table S3. Comparison of the performance of photocatalytic H_2 evolution rate of g-C₃N₄-based heterostructured photocatalysts without noble metal as co-catalyst.
- 13 Fig. S9 Comparison of (a) DRS (b) IR before and after H₂ production process.
- 14 Fig. S10 Comparison of TEM images before and after H₂ production process.
- **15** Fig. S11 Elemental mappings of 2.5-TBTA/g-C₃N₄ after H₂ production process.
- 16 Table S4. PL Decay parameters of samples.
- **17** Notes and references.

Experimental Section

Materials

2,4,6-triformylphloroglucinol (TP) and 4,4'-(benzo[c][1,2,5]thiadiazole-4,7diyl)dianiline (BTDA) were purchased from Jilin Chinese Academy of Sciences-Yanshen Technology Co. Ltd. Chloroplatinic acid, 1,3,5-Trimethylbenzene, 1,4dioxane, triethanolamine (TEOA), and ascorbic acid were obtained from Saan Chemical Technology Ltd. Urea and methanol was obtained from Sinopharm Chemical Reagent Company, Ltd. All commercial chemicals were used without further purification unless otherwise mentioned.

Characterizations

Powder X-ray diffraction (PXRD) data were collected on a TTR III multi-function X-ray diffractometer operated at 40 kV and 300 mA with Cu K α radiation. FT-IR spectra were recorded as KBr pellets using a Bruker Tensor 37 spectrometer with 2 cm⁻¹ resolution. The transmission electron microscopy (TEM) was acquired on HITACHI HT7700 with an electron acceleration energy of 100 kV. The images of high angle annular dark-field scanning transmission electron microscope (HAADF-STEM) and energy dispersive spectroscopy (EDS) mapping were observed by a JEM-ARM200F electron microscope operated at 200 kV. X-ray photoelectron spectroscopy (XPS) data were collected on an ESCALAB 250Xi system. Al K α X-ray (6 mA × 12 KV) was utilized as the irradiation source. All measurements were performed in the CAE mode with the reference of C 1s (284.80 eV). UV-vis diffuse reflectance

absorption spectra (DRS) were recorded on a Shimadzu UV-2600 UV-vis-NIR spectrophotometer with BaSO₄ as the reference. Steady-state PL spectra (excitation at 500 nm) were measured with a Hitachi F-4500 fluorescence spectrophotometer. Time-resolved photoluminescence spectra (TRPS) were obtained on an Edinburgh FLS 980 fluorescence spectrophotometer with excitation and detection wavelengths of 475 and 615 nm, respectively. Platinum contents were determined using inductively coupled plasma optical emission spectrometer (ICP-OES) with an Agilent ICP-OES 725 ES system, by digesting the hybrids in HNO₃/HCl (1:3, v/v).

Electrochemical measurement

Photoelectrochemical measurements conducted CHI760E were on а electrochemical workstation in a three-electrode cell. The counter electrode was a Pt wire, and the reference electrode was a Ag/AgCl electrode. For the preparation of the working electrodes, the as-synthesized 4 mg samples were added into a mixed solution of 10 μ L Nafion and 200 μ L ethanol, then the catalyst suspension (10 μ L \times 3) were dropped onto the ITO glass (0.7 cm \times 0.7 cm) surface, forming a film after drying naturally for 12 h. An aqueous solution containing 0.2 M Na₂SO₄ was used as the electrolyte. The i-t measurements were performed with the light on and off conditions (300 W Xe-lamp, $\lambda > 420$ nm). The electrochemical impedance spectroscopy (EIS) was performed in the frequency range from 10^{-1} to 10^{5} Hz with a bias potential of +1.5 V. The Mott-Schottky plots were obtained with a bias potential that ranged from -1.6 to 1.0 V (vs Ag/AgCl) under the frequency of 1000, 1500, and 2000 Hz, respectively.^{1,2}

Synthesis of g-C₃N₄ and C₃N₄-Pt

g-C₃N₄ was prepared according to a reported procedure.³ C₃N₄-Pt was synthesized as follows:³ g-C₃N₄ (0.6 g) was added to a mixed solvent of 150 mL deionized water and 60 mL methanol, and then ultrasonically dispersed for 5 min. After adding 1.2 mL of H₂PtCl₆ solution (0.0386 M in water) under stirring, the resultant suspension was irradiated for 3 h under a 300 W mercury lamp. After being cooled to room temperature, the product was separated by centrifugation and washed with water and EtOH, then dried at 70 °C overnight. The Pt content was 2.08% as determined by ICP-OES.

Synthesis of polymer TBTA

A Pyrex tube (10 mL) was charged with 2,4,6-triformylphloroglucinol (TP) (10.5 mg, 0.05 mmol), 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dianiline (BTDA) (24 mg, 0.075 mmol), mesitylene (0.6 mL), and ethanol (2.4 mL). The mixture was sonicated for 1 min, subsequently, 0.3 mL of acetic acid was added. The tube was flash frozen at 77 K using a liquid N₂ bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at 120 °C for 3 days. The red precipitate was collected by centrifugation and washed with 1,4-dioxane and anhydrous acetone. After drying at 50 °C for 24 h, the product was obtained as dark red powder (26 mg, 82.7%).

Synthesis of x-TBTA/g-C₃N₄ and 2.5-TBTA/g-C₃N₄-Pt (x refers to wt% of TBTA).

200 mg of g-C₃N₄ was dispersed in 4.5 mL of mesitylene/ethanol (4:1) in a Pyrex

tube by ultrasonication for 10 min. Subsequently, TP (1.7 mg, 0.008 mmol) and BTDA (3.8 mg, 0.012 mmol) were added and the mixture was sonicated for 5 min. Then, 0.15 mL of acetic acid was added. The tube was flash frozen at 77 K using a liquid N₂ bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at 120 °C for 3 days. The light red color precipitate was collected by centrifugation and washed with mesitylene and anhydrous acetone. After drying at 50 °C for 24 h, 2.5-TBTA/g-C₃N₄ was obtained as light red color powder (185 mg, 92.5%). Following the synthesis procedure of 2.5-TBTA/g-C₃N₄ with 0.0032 mmol TP and 0.0048 mmol BTDA, 0.016 mmol TP and 0.024 mmol BTDA, 0.024 mmol TP and 0.036 mmol BTDA, and 0.032 mmol TP and 0.048 mmol BTDA instead of 0.008 mmol TP and 0.012 mmol BTDA, respectively, as starting materials, 1.0-TBTA/g-C₃N₄, 5.0-TBTA/g-C₃N₄, 7.5-TBTA/g-C₃N₄, and 10.0-TBTA/g-C₃N₄ were prepared. In addition, 2.5-TBTA/g-C₃N₄ with g-C₃N₄-Pt was also prepared by using the synthesis procedure of 2.5-TBTA/g-C₃N₄ as the starting material.

General procedure for photocatalytic hydrogen evolution

The measurements were performed in a gas-closed circulation system (AuLight, Beijing, China, CEL-SPH2N). A Xe-lamp (CEL-HXF300, 300 W) equipped with $\lambda \geq$ 420 nm cutoff filter was used as visible-light source, and the temperature was maintained at 5°C using a homoeothermic cooling circulation pump. The H₂ evolution rate was quantified by an online gas chromatograph (GC7980, TCD detector, 13X molecular sieve columns, and Ar carrier). Typically, the photocatalysts (5 mg) was dispersed in 20 mL deionized water with 0.1 M ascorbic acid as a sacrificial reagent. Before measurement, the reactor was sonicated for 5 min to obtain well-distributed suspension and then illuminated by $\lambda \ge 420$ nm light from its top after being thoroughly degassed.

Density functional theory computational methodology

The present first principle DFT calculations were performed by Vienna Ab initio Simulation Package(VASP)⁵ with the projector augmented wave (PAW) method.⁶ The exchange-functional was treated using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE)⁵ functional. The cut-off energy of the plane-wave basis was set at 450 eV for the calculations of atoms and cell optimization. The vacuum spacing in a direction perpendicular to the plane of the catalyst was at least 15 Å. The Brillouin zone integration was performed using $3\times3\times1$ Monkhorst-Pack k-point sampling for a primitive cell.⁷ The self-consistent calculations apply a convergence energy threshold of 10⁻⁵ eV. The equilibrium lattice constants were optimized with maximum stress on each atom within 0.05 eV/Å. Finally, the interface adhesion energy (E_{ads}) has been calculated as: $E_{ads} = E_{total} - E_{TBTA} - E_{g-C3N4}$, where E_{total} is the energy of TBTA/g-C₃N₄.

Fig. S1 The photocatalytic H₂ evolution activity of x-TBTA/g-C₃N₄ (x = 0, 1.0, 2.5, 5.0, 7.5, 10.0, 100). Note: 5.0 mg catalyst and 20.0 mL deionized water under $\lambda \ge 420$ nm light irradiation.

Fig. S2 TEM images of (a) 1.0-TBTA/g-C₃N₄. (b) 5.0-TBTA/g-C₃N₄. (c) 7.5-TBTA/g-C₃N₄ and (d) 10.0-TBTA/g-C₃N₄.

Fig. S3 FTIR spectra of TBTA, 2.5-TBTA/ C_3N_4 , and g- C_3N_4 .

Fig. S4 FTIR spectra of as-synthesized samples.

Fig. S5 The UV-vis diffuse reflectance absorption spectra (DRS) of samples.

Sample	$\lambda_{abs-onset} a \ (nm)$	Е _{СВ} ^b (V)	E _{VB} ^c (V)	E _g ^d (V)
g-C ₃ N ₄	428	-1.26	1.64	2.90
TBTA	576	-1.45	0.70	2.15
2.5-TBTA/g-C ₃ N ₄	538	-1.265	1.04	2.30

Table S1. Absorption spectroscopic data and energy levels.

^{*a*} Absorption onset. ^{*b*} Determined from Mott-Schottky plots. ^{*c*} $E_{VB} = E_g + E_{CB}$. ^{*d*} Determined by the absorption onset from DRS spectra: $E_g = 1240/\lambda_{abs-onset}$.

Fig. S6 (a) MS plots of 2.5-TBTA/g-C₃N₄ and (b) Energy levels of TBTA, 2.5-

TBTA/g-C₃N₄ and g-C₃N₄.

Fig. S7 (a) The photocatalytic H₂ evolution activity with different catalyst amounts of 10-TBTA/g-C₃N₄. (b) The photocatalytic H₂ evolution activity with different sacrificial reagants of TBTA. (c) Long-term stability for H₂ production of 2.5-TBTA/g-C₃N₄-Pt. Note: 5.0 mg catalyst and 20.0 mL deionized water under $\lambda \ge 420$ nm light irradiation.

Fig. S8 (a) The photocatalytic H_2 evolution rate of 2.5-TBTA/g-C₃N₄ with monochromatic light irradiations. Note: 5.0 mg catalyst and 20.0 mL deionized water with 0.1 M AA as a sacrifice reagent. (b) Wavelength-dependent photocatalytic H_2 evolution rate and DRS spectrum of 2.5-TBTA/g-C₃N₄.

Dhata aata bust	Constalant	Sacrificial	Irradiation	Reaction rate	Def
rnotocataryst Co-cataryst		agent condition		(H ₂ evolution)	Kel.
			$\lambda \ge 420 \text{ nm}$	26.04 mm al/a/h	Thismush
2.3-1B1A/g-C3N4	3.0 Wt% Pt	AA	(300 W Xe lamp)	20.04 mm01/g/m	This work
EL DEDA/- C N			$\lambda \ge 420 \text{ nm}$	14.95	-
FIU-DFBA/g-C ₃ N ₄	1.0 Wt% Pt	TEOA	(300 W Xe lamp)	14.85 mmol/g/n	/
		TEOA	$\lambda \ge 420 \text{ nm}$	12.00	0
$P_3/g-C_3N_4$	1.0 wt% Pt	TEOA	(300 W Xe lamp)	13.00 mmol/g/n	8
DEDT/ CN			$\lambda \ge 420 \text{ nm}$	0.72	0
PFB1/g-C ₃ N ₄	1.0 Wt% Pt	TEOA	(300 W Xe lamp)	0.72 mmol/g/n	9
DOUT / CN	10 (0/ D)		$\lambda \ge 500 \text{ nm}$	2.05 1/4	10
$P3H1/g-C_3N_4$ 1.0 wt% Pt		AA	(300 W Xe lamp)	3.05 mmol/n	10
	2.0 (0/ D)	·	$\lambda \ge 400 \text{ nm}$	0.39 mmol	11
PPy/ g-C ₃ N ₄	3.0 wt% Pt	without	(300 W Xe lamp)	(25 h)	
DUC N. DOUE	1.0 wt% Pt	Na ₂ S-Na ₂ SO ₃	$\lambda \ge 400 \text{ nm}$	0.56 1/1	12
Pt/C3N4-P3HF			(300 W Xe lamp)	0.56 mmol/h	

Table S2. Comparison of the performance of photocatalytic H_2 evolution rate of organic semiconductor/g-C₃N₄ hybrids with Pt as co-catalysts.

	Co-catalyst	Sacrificial	Irradiation	Reaction rate	Ref.	
Photocatalyst		agent	condition	(H ₂ evolution)		
2 5-TBTA/g-C2N4	none	AA	$\lambda \ge 420 \text{ nm}$	11 73 mmol/g/h	This work	
2.5 1011/2 0314			(300 W Xe lamp)	11.75 mmorg/n		
Elu DERA/a CaNa		TEOA	$\lambda \ge 420 \text{ nm}$	2.73 mmol/g/h	1	
The DF DA/g-C3N4	none		(300 W Xe lamp)	2.75 mmol/g/m		
MG@hm-C	nono	TEOA	200 W Yo lamp	1.01 mmol/a/h	12	
(CN) ₃	none	ILOA	500 w Xe lamp	1.01 mmol/g/m	15	
CNDS NUL	3.0 wt% Ni	TEOA	$\lambda \ge 420 \text{ nm}$	$1.22 \text{ mm} \text{ s}^{1/\alpha/h}$	14	
CINF S-INH2			(300 W Xe lamp)	1.25 mmol/g/m		
Phosphorene/	Dhamharana	lestic soid	$\lambda \ge 400 \text{ nm}$	$0.57 \text{mm} \text{s}^{1/\alpha/h}$	15	
g-C ₃ N ₄	Phosphorene	factic acid	(300 W Xe lamp)	0.37 mm01/g/m		
C-N./(EaTDD)-O	2020	TEOA	$\lambda \ge 420 \text{ nm}$	0.18 mmol/a/b	16	
$C_{3}N_{4}/(FeTPP)_{2}O$	none	IEOA	(300 W Xe lamp)	0.18 mm01/g/n		
Black			1 > 120 mm			
phosphorous/	none	Methanol	$\lambda \ge 420 \text{ IIII}$	0.43 mmol/g/h	17	
g-C ₃ N ₄			(300 w Xe lamp)			
		TEOA	$\lambda \ge 400 \text{ nm}$	0.020 1/ /1	18	
C,IN-11O ₂ /g-C ₃ N ₄	none		(300 W Xe lamp)	0.039 mmol/g/h		

Table S3. Comparison of the performance of photocatalytic H_2 evolution rate of g- C_3N_4 -based heterostructured photocatalysts without noble metal as co-catalyst.

Fig. S9 Comparison of (a) DRS (b) IR before and after H₂ production process.

Fig. S10 Comparison of TEM images before and after H₂ production process.

	C	N	O	S
EN P				
200 nm ———				

Fig. S11 HAADF-STEM image and elemental mappings of 2.5-TBTA/g- C_3N_4 after

H₂ production process.

Samples	Lifetime, τ (ns)	Pre-exponential fators, A%	Average lifetime, τ (ns)	
TBTA	0.58	70.60	1 12	
	2.43	29.40	1.12	
2.5-TBTA/g-C ₃ N ₄	0.24	74.27	0.75	
	2.23	25.73	0.75	

Table S4. PL Decay parameters.

Notes and references

- 1 C.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong and F.-M. Zhang, *Appl. Catal. B: Environ.*, 2020, **266**, 118586.
- 2 W. L. Fu, J. M. Wang, S. Y. Zhou, R. J. Li and T. Y. Peng, ACS Appl. Nano Mater., 2018, 6, 2923-2933.
- 3 J. M. Wang, Y. Zheng, T. Y. Peng, J. Zhang, R. J. Li, *ACS Sustainable Chem. Eng.*, 2017, **5**, 7549-7556.
- 4 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 5 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758.
- 6 D. J. Chadi, Phys. Rev. B, 1977, 16, 5188-5192.
- 7 H. N. Ye, Z. Q. Wang, F. T. Yu, S. C. Zhang, K. Y. Kong, X. Q. Gong, J. L. Hua and
 H. Tian, *Appl. Catal. B: Environ*, 2020, 267, 118577.
- 8 F. T. Yu, Z. Q. Wang, S. C. Zhang, H. N. Ye, K. Y. Kong, X. Y. Gong, J. L. Hua and H. Tian, *Adv. Funct. Mater.*, 2018, 1804512.
- 9 J. Chen, C.-L. Dong, D. M. Zhao, Y.-C. Huang, X. X. Wang, L. Samad, D. Lianna,
 M. Shearer, S. H. Shen and L. J. Guo, *Adv. Mater.*, 2017, 29, 1606198.
- 10 X. H. Zhang, B. S. Peng, S. Zhang and T. Y. Peng, ACS Sustainable Chem. Eng., 2015, **3**, 1501-1509.
- 11 Y. Sui, J. H. Liu, Y. W. Zhang, X. K. Tian and W. Chen, Nanoscale, 2013, 5, 9150.
- 12 H. Yan and Y. Huang, Chem. Commun., 2011, 47, 4168-4170.
- 13 G. Zhou, Y. Shan, Y. Y. Hu, X. Y. Xu, L. Long, J. L. Zhang, J. Dai, J. H. Guo, J. C.
- Shen, S. Li, L. Z. Liu and X. L. Wu, Nat. Commun., 2018, 9, 3366.

- 14 N. N. Meng, J. Ren, Y. Liu, Y. Huang, T. Petit and B. Zhang, *Energy Environ. Sci.*, 2018, 11, 566-571.
- 15 J. R. Ran, W. Guo, H. L. Wang, B. C. Zhu, J. G. Yu and S.-Z. Qiao, *Adv. Mater.*, 2018, **30**, 1800128.
- 16 D. H. Wang, J. N. Pan, H. H. Li, J. J. Liu, Y. B. Wang, L. T. Kang and J. N. Yao, J. Mater. Chem. A, 2016, 4, 290-296.
- 17 M. S. Zhu, S. Kim, L. Mao, M. Fujitsuka, J. Y. Zhang, X. C. Wang and T. Majima, J. Am. Chem. Soc., 2017, 139, 13234-13242.
- 18 W. Chen, T.-Y. Liu, T. Huang, X.-H. Liu, G.-R. Duan, X.-J. Yang and S.-M. Chen, *RSC Adv.*, 2015, 5, 101214-101220.