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I. Figure S1. The computational models of cha (42T, a), gme (36T, b) and aft (54T, c). 

(Color code: Si tan; O red; H white.) 
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II. Scheme S1. The reaction mechanism for the SCR reaction in the Cu-zeolite. The reaction 

pathways for the oxidation of CuI and the reduction of CuII with one Al atom in the 

framework cages are represented in black (adapted from Janssens et al.13), while that with 

two Al atoms in the frameworks are represented in green (adapted from Schneider et al.12). 

The same intermediates on 1Al and 2Al sites are indicated in orange. Reactants and 

products are colored in red and black, respectively. 

(a) (b) (c) 
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III. Figure S2. Reaction energy diagrams and optimized structures of intermediates and 

transition states for reduction by NO and NH3 on CuIIOH-Al-gme (a) and -aft (b). Values 

of reaction energies and energy barriers are shown in black and magenta, respectively. (The 

value in parenthesis for aft is the energy barrier between INT5' and INT6'.) 

 

 

(a) 

(b) 
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IV. Figure S3. Reaction energy diagrams and optimized structures of intermediates and 

transition states for reduction by NO and NH3 on CuII-2Al-gme (a) and -aft (b). 

 

 

V. Table S1. Deformation energies (kJ/mol) of intermediates and transition states with respect 

to the pristine structures of CuII-2Al-cha, -gme, and -aft. 

Cage INT1 TS1 INT2 
cha 511 390 524 
gme 520 412 547 
aft 498 395 474 

 

(a) 

(b) 



7 
 

-600

-500

-400

-300

-200

-100

0

100

2.24 1.96

2.13

1.32

1.781.55

2.69

R
e

la
tiv

e
 e

ne
rg

ie
s 

(k
J/

m
o

l)

cha + NO + O2

2.09 1.91

INT1

–142

–97

2.10

1.451.37

1.96

TS145 INT2

–106

1.79 2.00

10TS2

–96

2.251.78

INT3

–321 NO

–377

INT4b

65
TS3

–312

–336

INT5

NO2

–318

INT6

–503

INT7
INT8

–485

N2 + H2O

NH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. Figure S4. Reaction energy diagrams and local structures of intermediates and transition 

states for oxidation by CuI-2AlH-cha (a), -gme (b), and -aft(c). Values of reaction energies 

and energy barriers are shown in black and magenta, respectively.  
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VII. Figure S5. Local geometries of the INT1, TS1, INT2, TS2 and INT3 of cha (blue), gme 

(pink), and aft (purple) at the 2Al site. The distances between the adsorbed molecules and 

the Brønsted proton are shown in angstrom. The values beneath each structure are 

adsorption energies or reaction energies with respect to the isolated reactants. 
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VIII. Figure S6. Local geometries of the TS3, INT5, and INT6 of cha (blue), gme (pink), and 

aft (purple) at the Al site. The distances between the adsorbed molecules and the Brønsted 

proton are shown in angstrom. The values beneath each structure are reaction energies with 

respect to the isolated reactants. 

 

IX. Table S2. Deformation energies (kJ/mol) of intermediates and transition states for the 

oxidation with respect to the pristine structures of CuI-Al-cha, -gme, and -aft. 

Cages INT1 TS1 INT2 TS2 INT3 INT4 TS3 INT5 INT6 INT7 
CHA 83 86 91 90 92 93 74 72 90 91 
GME 85 90 95 92 93 98 89 67 88 88 
AFT 73 79 86 83 84 84 72 74 83 87 

 

X. Table S3. Deformation energies (kJ/mol) of intermediates and transition states for the 

oxidation with respect to the pristine structures of CuI-2AlH-cha, -gme, and -aft. 

Cages INT1 TS1 INT2 TS2 
cha 77 83 147 136 
gme 84 89 150 144 
aft 83 90 163 148 
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INT1 INT2 INT4 

   
0 17 71 

XI. Figure S7. Optimized structures and relative energies (kJ/mol) of INT1, INT2, and INT4 

for the gme cage. The energies of INT2 and INT4 are obtained with respect to INT1 and 

O2.  
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INT1 INT2 INT4 

   
0 67 56 

   
56 10 2 

XII. Figure S8. Optimized structures and relative energies (kJ/mol) of INT1, INT2, and INT4 

for the aft cage (top: para-site; bottom: per-site). The energies of INT2 and INT4 are 

obtained with respect to the para-site INT1 and O2. 
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XIII. Table S4. Interaction energies (ΔEint, in kJ/mol) between the [zeolite]2  cage and the inner 

2[CuI(NH3)2]+/2[OCuI(NH3)2]+ ion in INT1 and INT4 as well as relative energies of the 

outer cage (ΔEcage) and the inner species (ΔECu) for cha and aft. 

  INT1 INT4 
  ΔEint ΔEcage ΔECu ΔEint ΔEcage ΔECu 

cha 
para 1068 11 68 1118 12 50 
per 937 0 0 1015 0 0 

aft 
para 976 11 49 1037 16 56 
per 860 0 0 908 0 0 

gme para 1141 / / 1212 / / 
ΔEint = EINT/TS-(Ecage + ECu) 
Ecage and ECu are single point energies of the outer cage and the inner species of INT/TS. 

 

 

XIV. Figure S9. Local geometries of intermediates and transition states for the O2 activation by 

the 2[NH3-CuI-NH3] dimer in 2Al -gme (pink), and -aft (purple). 
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XV. Figure S10. Potential energy surface between INT2 and INT3 for the O2 activation by the 

2[NH3-CuI-NH3] dimer in 2Al-cha. Partial optimization was conducted with O-O distance 

being fixed and all the other coordinates optimized. 
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XVI. Natural electron configurations of Cu in Cu-cha, Cu-gme, and Cu-aft. 

Table S5. Natural electron configurations of Cu in intermediates and transition states at the Al-

CuIIOH site of Cu-cha, Cu-gme, and Cu-aft. 

species cha gme aft 

Al-CuIIOH 4s0.383d9.364p0.234d0.01 4s0.383d9.374p0.224d0.01 4s0.393d9.364p0.224d0.01 

INT1 4s0.333d9.534p0.304d0.025p0.01 4s0.343d9.534p0.284d0.025p0.01 4s0.333d9.504p0.314d0.025p0.01 

TS1 4s0.313d9.724p0.244d0.025p0.01 4s0.293d9.704p0.264d0.025p0.01 4s0.323d9.724p0.244d0.025p0.01 

INT2 4s0.363d9.694p0.264d0.025p0.01 4s0.353d9.704p0.254d0.025p0.01 4s0.333d9.644p0.254d0.025p0.01 

TS2 4s0.353d9.494p0.344d0.01 4s0.403d9.544p0.264d0.02 4s0.333d9.414p0.404d0.025p0.01 

INT3 4s0.403d9.464p0.364d0.01 4s0.403d9.504p0.294d0.015p0.01 4s0.443d9.484p0.294d0.02 

INT4 4s0.383d9.434p0.374d0.01 4s0.393d9.434p0.364d0.01 4s0.393d9.414p0.364d0.01 

TS3 4s0.383d9.464p0.324d0.01 4s0.383d9.474p0.334d0.01 4s0.383d9.464p0.314d0.01 

INT5 4s0.373d9.714p0.184d0.01 4s0.383d9.754p0.134d0.015p0.01 4s0.323d9.704p0.184d0.01 

TS4 4s0.353d9.704p0.194d0.01 4s0.303d9.614p0.214d0.01 4s0.303d9.614p0.214d0.01 

INT6 4s0.333d9.684p0.205p0.01 4s0.373d9.724p0.134d0.015p0.01 4s0.363d9.714p0.144d0.01 

TS5 4s0.323d9.694p0.184d0.01 4s0.333d9.704p0.154d0.015p0.01 4s0.323d9.684p0.174d0.01 

INT7 4s0.273d9.734p0.304d0.01 4s0.333d9.684p0.20 4s0.333d9.664p0.21 

INT8 4s0.183d9.934p0.075p0.01 4s0.193d 9.924p0.075p0.01 4s0.203d9.924p0.075p0.01 

 

Table S6. Natural electron configurations of Cu in intermediates and transition states at the 2Al-

CuII site of Cu-cha, Cu-gme, and Cu-aft. 

species cha gme aft 

2Al-CuII 4s0.293d9.304p0.214d0.015p0.01 4s0.293d9.304p0.224d0.015p0.01 4s0.303d9.304p0.234d0.015p0.01 

INT1 4s0.343d9.524p0.264d0.025p0.01 4s0.333d9.514p0.274d0.025p0.01 4s0.343d9.524p0.264d0.025p0.01 

TS1 4s0.273d9.604p0.264d0.025p0.01 4s0.243d9.594p0.294d0.025p0.01 4s0.243d9.624p0.284d0.025p0.01 

INT2 4s0.293d9.764p0.224d0.025p0.01 4s0.283d9.764p0.234d0.025p0.01 4s0.303d9.764p0.214d0.025p0.01 

TS2 4s0.283d9.734p0.214d0.025p0.01 4s0.273d9.724p0.244d0.025p0.01 4s0.263d9.744p0.214d0.025p0.01 

INT3 4s0.393d9.734p0.194d0.015p0.01 4s0.343d9.734p0.224d0.025p0.01 4s0.373d9.734p0.194d0.015p0.01 

TS3 4s0.253d9.604p0.264d0.025p0.01 4s0.253d9.594p0.284d0.015p0.01 4s0.243d9.604p0.274d0.025p0.01 

INT4 4s0.283d9.734p0.254d0.025p0.01 4s0.273d9.714p0.274d0.025p0.01 4s0.253d9.764p0.264d0.025p0.01 

INT5 4s0.333d9.844p0.174d0.015p0.01 4s0.273d9.874p0.194d0.015p0.01 4s0.323d9.854p0.174d0.015p0.01 

 



15 
 

Table S7. Natural electron configurations of Cu in intermediates and transition states at the Al-

CuI site of Cu-cha, Cu-gme, and Cu-aft. 

species cha gme aft 

Al-CuI 4s0.273d9.874p0.164d0.015p0.01 4s0.273d9.874p0.174d0.015p0.01 4s0.273d9.864p0.174d0.015p0.01 

INT1 4s0.343d9.544p0.274d0.015p0.01 4s0.343d9.544p0.274d0.025p0.01 4s0.353d9.544p0.264d0.025p0.01 

TS1 4s0.323d9.644p0.214d0.015p0.01 4s0.353d9.394p0.274d0.015p0.01 4s0.353d9.394p0.274d0.015p0.01 

INT2 4s0.373d9.314p0.304d0.015p0.01 4s0.363d9.314p0.304d0.015p0.01 4s0.373d9.314p0.294d0.015p0.01 

TS2 4s0.363d9.384p0.344d0.015p0.01 4s0.353d9.384p0.344d0.015p0.01 4s0.373d9.384p0.324d0.015p0.01 

INT3 4s0.323d9.344p0.264d0.015p0.01 4s0.323d9.344p0.264d0.015p0.01 4s0.333d9.344p0.244d0.015p0.01 

INT4 4s0.343d9.444p0.334d0.025p0.01 4s0.343d9.454p0.324d0.025p0.01 4s0.343d9.444p0.334d0.025p0.01 

TS3 4s0.313d9.694p0.214d0.025p0.01 4s0.323d9.694p0.204d0.015p0.01 4s0.323d9.704p0.184d0.015p0.01 

INT5 4s0.283d9.674p0.194d0.015p0.01 4s0.283d9.664p0.214d0.015p0.01 4s0.313d9.634p0.204d0.015p0.01 

INT6 4s0.383d9.314p0.265p0.01 4s0.383d9.314p0.265p0.01 4s0.393d9.314p0.255p0.01 

INT7 4s0.323d9.424p0.284d0.025p0.01 4s0.313d9.424p0.284d0.025p0.01 4s0.343d9.434p0.234d0.025p0.01 

INT8 4s0.383d9.364p0.234d0.015p0.01 4s0.373d9.364p0.234d0.015p0.01 4s0.373d9.364p0.244d0.015p0.01 

 

Table S8. Natural electron configurations of Cu in intermediates and transition states at the 2AlH-

CuI site of Cu-cha, Cu-gme, and Cu-aft. 

species cha gme aft 

2AlH-CuI 4s0.343d9.834p0.164d0.015p0.01 4s0.333d9.834p0.164d0.015p0.01 4s0.353d9.824p0.164d0.015p0.01 

INT1 4s0.333d9.544p0.294d0.025p0.01 4s0.323d9.544p0.294d0.025p0.01 4s0.333d9.534p0.294d0.025p0.01 

TS1 4s0.343d9.394p0.304d0.025p0.01 4s0.343d9.384p0.294d0.025p0.01 4s0.343d9.334p0.334d0.015p0.01 

INT2 4s0.353d9.344p0.394d0.015p0.01 4s0.353d9.344p0.384d0.015p0.01 4s0.363d9.344p0.384d0.015p0.01 

TS2 4s0.353d9.344p0.354d0.015p0.01 4s0.343d9.344p0.354d0.025p0.01 4s0.363d9.354p0.334d0.015p0.01 

INT3 4s0.303d9.324p0.294d0.015p0.01 4s0.293d9.324p0.294d0.015p0.01 4s0.293d9.324p0.304d0.015p0.01 

INT4 4s0.333d9.454p0.304d0.025p0.01 4s0.333d9.454p0.304d0.025p0.01 4s0.333d9.454p0.314d0.025p0.01 

TS3 4s0.273d9.654p0.274d0.025p0.016s0.01 4s0.313d9.694p0.204d0.015p0.01 4s0.303d9.664p0.214d0.015p0.01 

INT5 4s0.263d9.664p0.254d0.025p0.01 4s0.273d9.654p0.264d0.025p0.01 4s0.253d9.664p0.254d0.025p0.01 

INT6 4s0.333d9.314p0.314d0.015p0.01 4s0.343d9.294p0.314d0.015p0.01 4s0.343d9.294p0.324d0.015p0.01 

INT7 4s0.343d9.294p0.324d0.015p0.01 4s0.333d9.324p0.304d0.015p0.01 4s0.333d9.284p0.324d0.015p0.01 

INT8 4s0.383d9.364p0.234d0.015p0.01 4s0.293d9.304p0.224d0.015p0.01 4s0.303d9.304p0.234d0.015p0.01 
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Table S9. Natural electron configurations of Cu in intermediates and transition states at the 

[CuII(NH3)4]2+ site of CuII-2Al-cha, -gme, and aft. 

species cha gme aft 

2Al-CuII 4s0.373d 9.344p 0.284d 0.03 4s0.393d9.354p0.194d0.035p0.01 4s0.373d9.344p0.274d0.02 

INT1 4s0.383d9.334p0.304d0.035p0.01 4s0.383d9.344p0.264d0.035p0.01 4s0.373d9.334p0.284d0.035p0.01 

TS 4s0.393d9.594p0.214d0.025p0.01 4s0.373d9.654p0.194d0.025p0.01 4s0.373d9.614p0.234d0.025p0.01 

INT2 4s0.513d9.744p0.164d0.025p0.01 4s0.493d9.754p0.174d0.015p0.01 4s0.483d9.764p0.174d0.025p0.01 

 

Table S10. Natural electron configurations of Cu in intermediates and transition states at the 2Al-

2CuI site of Cu-cha, Cu-gme, and Cu-aft. 

species cha gme aft 

INT1 4s0.503d9.774p0.134d0.025p0.01 4s0.513d9.774p0.154d0.025p0.01 4s0.523d9.784p0.134d0.025p0.01 

 4s0.553d9.774p0.134d0.015p0.01 4s0.533d9.774p0.184d0.025p0.01 4s0.503d9.784p0.134d0.025p0.01 

INT2 4s0.363d9.564p0.224d0.025p0.01 4s0.393d9.574p0.184d0.025p0.01 4s0.333d9.534p0.214d0.025p0.01 

 4s0.293d9.584p0.244d0.025p0.01 4s0.403d9.604p0.234d0.025p0.01 4s0.313d9.504p0.214d0.025p0.01 

INT3 4s0.303d9.484p0.314d0.02 4s0.323d9.484p0.194d0.025p0.01 4s0.303d9.484p0.304d0.02 

 4s0.303d9.484p0.314d0.02 4s0.323d9.484p0.204d0.025p0.01 4s0.303d9.484p0.304d0.02 

TS 4s0.343d9.354p0.374d0.02 4s0.353d9.374p0.244d0.025p0.01 4s0.343d9.354p0.374d0.02 

 4s0.343d9.354p0.374d0.02 4s0.353d9.374p0.234d0.025p0.01 4s0.343d9.354p0.374d0.02 

INT4 4s0.393d9.244p0.414d0.01 4s0.393d9.244p0.374d0.015p0.01 4s0.373d9.234p0.434d0.01 

 4s0.393d9.244p0.404d0.01 4s0.383d9.244p0.374d0.015p0.01 4s0.373d9.234p0.434d0.01 
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XVII. NPA charge of Cu in Cu-cha, Cu-gme, and Cu-aft.  
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Figure S11. Natural population analysis (NPA) charge on the Cu ions of intermediates and 

transition states during the reduction (a, b) and oxidation (c, d) processes. (a, c) show the 

processes on the Al site, and (b, d) show the processes on the 2Al site. The superscript 

numbers along the horizontal axes represent the spin multiplicity of the ground state. 
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Figure S12. NPA charge on the Cu ions of intermediates and transition states during 

reduction at the [CuII(NH3)4]2+ site of CuII-2Al-cha, -gme, and aft. The superscript numbers 

along the horizontal axes represent the spin multiplicity of the ground state. 
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Figure S13. NPA charge on the Cu ions of intermediates and transition states during 

reduction at the 2Al-2CuI site of Cu-cha, Cu-gme, and Cu-aft. The superscript numbers 

along the horizontal axes represent the spin multiplicity of the ground state. 

 

 

 

 


