Supporting Information

Production of Renewable Oleo-Furan Surfactants by Cross-Ketonization of Biomass-Derived Furoic Acid and Fatty Acids

Hannah Nguyen,^a Yunzhu Wang,^b David Moglia,^a Jiayi Fu,^{a,b} Weiqing Zheng,^b Marat Orazov^{*a,b} and Dionisios G. Vlachos^{*a,b}

^a Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

^b Catalysis Center for Energy Innovation, Newark, Delaware 19716, USA.

Email: orazov@udel.edu; vlachos@udel.edu

Thermochemistry calculations

a. Acylation of furan with acetic anhydride

All ΔG calculations were done at the G4 level

Furan:acetic anhydride molar ratio = 1:1

Furan Acetic anhydride

ydride 2-acetyl furan

Acetic acid

Temp (° C)	∆G (T) (kcal/mol)	K _{eq}	Furan Conversion (%)		
150	-4.65	253.58	94.09		
200	-4.58	130.14	91.94		
250	-4.50	75.87	89.70		

 b. Acylation of furan with acetic acid or lauric acid All ∆G calculations were done with m062-x functional and 6-311G(2df,β) basis set Furan:acid molar ratio = 1:1

$$\begin{array}{c} \circ \\ & \circ \\ & & \circ \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Furan Carboxylic acid

2-acylfuran

Temp (° C)	∆G (T) (kcal/mol)		к	eq	Furan Conversion (%)	
	Acetic	Lauric	Acetic Lauric		Acetic	Lauric
150	10.81	11.31	2.59e-6	1.42e-6	0.16	0.12
200	10.97	11.48	8.75e-6	4.92e-6	0.29	0.22
250	11.07	11.65	2.35e-5 1.34e-5		0.48	0.37

 c. Cross-ketonization of 2-furoic acid with acetic acid All ∆G calculations were done at the G4 level Furoic acid:acetic acid molar ratio = 1:1

Furoic acid Acetic acid

2-acetyl furan

Temp (° C)	∆G (T) (kcal/mol)	K _{eq} (M)	Furoic acid conversion
150	-14.1823	2.11E+07	100
200	-15.8396	2.07E+07	100
250	-17.4912	2.03E+07	100

Figure S.1. GC calibration curves for chemical standards (\bullet) hexane, (\bullet) 2-acetyl furan, and (\bullet) 2-hexanoyl furan.

Compound	Compound structure	Number of C	Calibrated slope	Theoretical slope	Effective carbon
hexane	\sim	6	1.05E-04	N/A	6
2-acetyl furan	o	6	2.00E-04	N/A	3.15
2-hexanoyl furan		10	8.83E-05	8.83E-05	7.15
2-dodecanoyl furan	$R = n-C_{11}$	16	N/A	4.80E-05	13.15

Table S.1. Effective carbon number calculation for 2-dodecanoyl furan.

Catalyst screening at 300 °C

Figure S.2. Performance of various commercial metal oxides in the reaction of 2-furoic acid with lauric acid in n-dodecane. Reaction conditions: 0.05 M lauric acid, 0.25 M 2-furoic acid, 0.2 g catalyst, 300 °C, 90 min, 20 bar N_2 , 800 rpm. The pressure at reaction temperature is 40 bar.

Tests at various FA:LA ratios

The activity, at various lauric:acid molar ratios over Fe_3O_4 , as a case study catalyst, suggests that the cross-ketonization is favored as higher furoic acid:lauric acid ratios (Figure S.3); therefore a lauric acid:furoic acid molar ratio of 1: 5 was chosen for the initial screening.

Figure S.3. Acid conversion and product yield at various furoic acid (FA) to lauric acid (LA) molar ratios, with the LA concentration constant at 0.05 M over the Fe₃O₄ catalyst. Reaction conditions: 0.05 M lauric acid, [0.1-0.25] M 2-furoic acid, 0.2 g Fe₃O₄, 316 °C, 90 min.

External mass transfer tests

The activity (demonstrated for FeO) vs. the stirring speed from 600 to 1000 rpm, shown in Fig. S.4, indicates no external mass transfer limitations.

Figure S.4. Lauric acid conversion and 2-dodecanoyl yield at various mixing speeds. Reaction conditions: 0.05 M lauric acid, 0.25 M 2-furoic acid, 0.2 g FeO, 316 °C, 90 min.

Carbon balance analysis

Figure S.5. Carbon balance for lauric acid and furoic acid in the catalyst screening experiments. Reaction conditions: 0.05 M lauric acid, 0.25 M 2-furoic acid, 0.2 g catalyst, 316 °C, 90 min, 20 bar N_2 , 800 rpm.

Activity of the homogeneous Fe species

Figure S.6. Comparison of activity for cross-ketonization between FeO, its filtrate after the reaction, and homogeneous ferrocene (FeCp₂). Reaction conditions: 0.05 M lauric acid, 0.25 M 2-furoic acid, 0.2 g FeO or FeCp₂, 316 °C, 90 mins.

Fe leaching test

Table S.2. Fe content in pure dodecane and post-reaction filtrates of iron oxides measured by ICP.

	FeO	Fe ₂ O ₃	Fe ₃ O ₄
Run 1	70 ppm	10 ppm	10 ppm
Run 2	35 ppm	15 ppm	12 ppm
Run 3	94 ppm	14 ppm	9 ppm
Dodecane	10 ppm		

The Fe concentration detected in the post-reaction filtrates of Fe_3O_4 and Fe_2O_3 is comparable to that of pure dodecane, indicating that the Fe species are at the measurement noise level.

Reduction profile of the Fe_xO_y catalysts

Figure S.7. H_2 TPR-TGA profiles of iron oxides: FeO (a), Fe₃O₄ (b), and Fe₂O₃ (c).

Figure S.8. Time evolution of 2-dodecanoyl furan formation over Fe₃O₄. Reaction conditions: 0.05 M lauric acid, 0.25 M 2-furoic acid, 0.2 g Fe₃O₄, 316 $^{\circ}$ C.

Induction period in catalyst activity

Oxidation state of Fe of the surface of Fe_3O_4

Figure S.9. XPS spectra of Fe $2p_{3/}$ of Fe₃O₄ catalyst pretreated in H₂ (a), pure dodecane (b), 0.05 M lauric acid in dodecane (c), and 0.25 M furoic acid in dodecane (d). Reaction conditions: 0.2 g Fe₃O₄, 316 °C, 30 min.

Figure S.10. Iron oxidation state on the surface of Fe_3O_4 before and after pretreatment and reaction as shown by XPS.

Acidity measurement of the fresh oxides

Pyridine Fourier transform infrared (FT-IR) spectroscopy was conducted on an FT-IR Spectrometer (Nicolet 8700) equipped with a MCT detector (128 scans at a spectral resolution of 2 cm⁻¹). The catalyst sample was pressed to a thin pellet before analysis. FeO, Fe₂O₃, Fe₃O₄, or CeO₂ was mixed with SiO₂ at a mass ratio of 1:4 before being pressed. The pellet was heated to 300 °C for 1 h under vacuum of approximately 10⁻⁵ Pa to remove adsorbed water and impurities. The sample was then cooled to 150 °C, at which the background was scanned. Pyridine (>99%, Sigma Aldrich) was adsorbed on the sample for 10 min. The sample was then evacuated under vacuum for 20 min, and the spectra were collected.

The peaks corresponding to Lewis acid sites and Brønsted acid sites are labeled as LS and BS, respectively, in Figure S.11 below.

Figure S.11. IR spectra of pyridine adsorption on the fresh metal oxide catalysts.

Isostopic tracing

Figure S.12. GCMS spectra of (a) 12-tricosanone from reaction starting with unlabeled lauric, (b) 12-tricosanone from reaction starting with ¹³C-C1 lauric acid, and (c) 2-dodecanoyl furan from reaction starting with¹³C-C1 lauric acid, and their respective zoomed in region in (d), (e), and (f).

N_2 physisorption data of the catalysts

Table S.3. BET surface areas and micropore volumes of fresh oxide catalysts and the spent iron oxides after cross-ketonization reactions.

	Fresh catalyst					Spent catalyst				
	FeO	Fe₃O₄	Fe ₂ O ₃	CeO ₂	TiO₂	Al ₂ O ₃	ZrO ₂	FeO	Fe₃O₄	Fe ₂ O ₃
BET surface area (m²/g)	0.1	8.8	34.3	75.4	84.5	79.0	104.5	18.7	9.1	17.7
Micropore volume (cm³/g)	2.83e-4	2.18e-2	7.58e-2	0.23	0.27	0.33	0.62	8.43e-2	2.29e-2	8.53e-2