Supplementary Information

Constructing CuNi Dual Active Sites on ZnIn₂S₄ for Highly Photocatalytic Hydrogen Evolution

Jingyi Jin[†], Yanren Cao[†], Ting Feng[†], Yanxin Li[†], Ruonan Wang[†], Kaili Zhao[†], Wei Wang^{†,§}, Bohua Dong^{†,}*, Lixin Cao^{†,}*

[†] School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

§ Aramco Research Center-Boston, Aramco Services Company, Cambridge, MA 02139, USA

* Corresponding author. Tel.: +86 13864808725; fax: +86 0532 66781901

E-mail address: caolixin@ouc.edu.cn (Lixin Cao); dongbohua@ouc.edu.cn (Bohua Dong)

EXPERIMENTAL SECTION

Fig. S1 SEM images of (a) pure $ZnIn_2S_4$ and (b) 12% Cu_2Ni_1 -ZIS. The enlarged images of (c) pure $ZnIn_2S_4$ and (d) 12% Cu_2Ni_1 -ZIS.

Fig. S2 TEM image of pure $ZnIn_2S_4$.

Fig. S3. The EDS spectrum of 12% Cu_2Ni_1 -ZIS

Table S1. The surface element content from XPS characterization.

Element	Atomic %	Element	Atomic %	
S	31.05	Cu	0.85	
Zn	17.68	Ni	0.55	
In	10.56	С	28.89	
N	2.95	0	7.47	
Exact mass ratio of Cu to ZnIn ₂ S ₄ = 1.62%		Exact mass ratio of Ni to ZnIn ₂ S ₄ = 0.97%		

Table S2 Performance comparison of $ZnIn_2S_4$ modified by different types of cocatalyst

Category	Cocatalyst	Illumination conditions	Sacrifice agent	fice agent H_2 evolution Rate $(\mu mol g^{-1} \cdot h^{-1})$		Ref.
Bi-metals	Cu-Ni	λ≥420 nm	0.35 M Na ₂ S 0.25 M Na ₂ SO ₃	l Na ₂ S Na ₂ SO ₃ 7825		This work
	Co-Ni	λ>420 nm	Ascorbic acid	3336.6	4.3	[1]
	Co-P	λ>420 nm	Lactic acid	7840	44.0	[2]
Noble metal	Au	λ>420 nm	None	1633.4	4.41	[3]
	Pt	λ>420 nm	140 mmol Na ₂ S 100 mmol Na ₂ SO ₃	1150	7.57	[4]
Metal oxides	Ag ₂ O	full spectrum	Triethanolamine	2334.19	3.39	[5]
	WO ₃	λ>420 nm	0.25 M Na ₂ SO ₃ 0.35 M Na ₂ S	2202.9	5.22	[6]
Metal sulfides	MoS ₂	λ>420 nm	Lactic acid	2512.5	8.73	[7]
		λ≥420 nm	0.43 M Na ₂ S 0.5 M Na ₂ SO ₃	2060	10.85	[8]
	MoSe ₂	λ>420 nm	Na_2S , Na_2SO_3	2228	2.18	[9]
Others	Ni ₂ P	λ≥400 nm	Lactic acid	2066	4.43	[10]
	CQD-Pt	λ>420 nm	Triethanolamine	1032.2	11.21	[11]
	rGO-Pt	λ>420 nm	0.25 M Na ₂ SO ₃ 0.35 M Na ₂ S	1210	26.3	[12]

* A parameter of α is adopted to describe the cocatalytic performance, which is defined by the quotient of the reaction rate of ZIS with cocatalysts and that of pure $ZnIn_2S_4$ without cocatalysts in each paper.

Figure S4. Stability test of pure ZnIn₂S₄ under the same condition as mentioned in this paper

Figure S5. The XRD spectrum of 12% Cu₂Ni₁-ZIS before and after stability test

The XRD spectrum of 12% Cu_2Ni_1 -ZIS after 20 h stability test didn't display evident characteristic peak migration compared with previous 12% Cu_2Ni_1 -ZIS except the peak intensity of (006) lattice plane decreased a little.

Fig. S6 (a) SEM (b-c) TEM images of 12% Cu₂Ni₁-ZIS after stability test.

Figure S7 XPS valence band spectrum for 12%Cu₂Ni₁-ZIS showing the edge of valence band

Figure S8 Mott-Schottky curve of pure ZnIn₂S₄

Mott-Schottky curves were taken at 1.0 kHz frequency. The potential ranged from -1.3 V to -0.5 V (vs. Ag/AgCl), and the modulation amplitude of 5 mV. The 0.5 M Na_2SO_4 was used as the electrolyte solution.

According to Fig. S8, the flat band (FB) potential is -1.12 V (vs. Ag/AgCl). In general, the flat band potential of n-type semiconductors obtained from Mott-Schottky curves is about 0.2 V more positive than its conduction band potential [13]. Therefore, the conduction band potential of ZnIn₂S₄ is about -1.32 V vs. Ag/AgCl. According to the following equation:

$$E_{FB}(vs. NHE) = E_{FB}(vs. Ag/AgCl) + 0.197$$

The conduction band of $ZnIn_2S_4$ is -1.13 V vs. NHE. Combining its band gap (2.54 eV), the valence band potential of $ZnIn_2S_4$ is 1.41 V vs. NHE.

Figure S9 Transient-state photoluminescence spectra: (a) ZnIn₂S₄ (b) 12% Cu₂Ni₁-ZIS

Table S3 Fluorescence emission lifetime and relevant percentage data of $ZnIn_2S_4$ and $12\%Cu_2Ni_1$ -ZIS

Samples	$\tau_1(ns)$	$A_1(\%)$	$\tau_2(ns)$	$A_2(\%)$	Average lifetime (τ_a) (ns)
ZnIn ₂ S ₄	0.87	65.62	3.43	34.38	2.59
12%Cu ₂ Ni ₁ -ZIS	0.65	56.44	4.67	43.56	4.05

The fitted parameters of the above transient-state photoluminescence spectra are acquired via the following bi-exponential formulas:

 $I_{(t)} = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$

The above average lifetime value is obtained according to the following formulas:

$$\tau_a = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$

where I_0 is the baseline correction value, A_1 and A_2 represent the bi-exponential factors. A_1 , A_2 represent the double exponential factors. τ_1 , τ_2 and τ_a corresponding the lifetime in different stages (radiation, non-radiation) and average lifetime respectively.

Figure S10 The energy level position and mechanism of electrons migration in 12%Cu₂Ni₁- ZIS

Reference

(1) Z.-J. Li, X.-H. Wang, W.-L. Tian, A. Meng and L.-N. Yang, ACS Sustain. Chem. Eng., 2019, 7, 20190-20201.

(2) Q.-W. Liu, M.-D. Wang, Y.-S. He, X.-X. Wang and W.-Y. Su, Nanoscale, 2018, 10,

- (3) T.-T.Zhu, X.-J.Ye, Q.-Q. Zhang, Z.-Z. Hui, X.-C. Wang and S.-F. Chen, J. Hazard Mater., 2019, **367**, 277-285.
- (4) L. Shang, C. Zhou, T. Bian, H.-J. Yu, L.-Z. Wu, C.-H. Tung and T.-R.Zhang, J. Mater. Chem. A, 2013, 1, 4552-4558.
- (5) Y. Xiao, Z.-Y. Peng, W.-L.Zhang, Y.-H. Jiang and L. Ni, *Appl. Surf. Sci.* 2019, 494, 519-531.
- (6) P.-F. Tan, A.-Q.Zhu, L.-L. Qiao, W.-X. Zeng, Y.-J. Ma, H.-G. Dong, J.-P. Xie andJ. Pan, *Inorg. Chem. Front.*, 2019, 6, 929-939.
- (7) C. Liu, B. Chai, C.-L. Wang, J.-T. Yan and Z.-D. Ren, *Int. J. Hydrogen Energy*, 2018, *43*, 6977-6986.
- (8) L. Wei, Y.-J. Chen, Y.-P. Lin, H.-S. Wu, R.-S. Yuan and Z.-H. Li, *Appl. Catal. B Environ.* 2014, **144**, 521-527.
- (9) D.-Q.Zeng, L. Xiao, W.-J. Ong, P.-Y. Wu, H.-F. Zheng, Y.-Z. Chen and D.-L.Peng, *Chemsuschem* 2017, 10, 4624-4631.
- (10) X.-L. Li, X.-J.Wang, J.-Y. Zhu, Y.-P. Li, J. Zhao and F.-T. Li, *Chem. Eng. J.*, 2018, 353, 15-24.
- (11) Q. Li, C. Cui, H. Meng and J.-G. Yu, Chem. Asian J., 2014, 9, 1766-1770.
- (12) F. Tian, R.-S.Zhu, J. Zhong, P. Wang, F. Ouyang and G. Cao, *Int. J. Hydrogen Energy*, 2016, **41**, 20156-20171.

(13) J. Dong, Y. Shi, C.-P. Huang, Q. Wu, T. Zeng and W.-F. Yao, *Appl. Catal. B Environ.*, 2019, **243**, 27-35.