Supporting Information for

Boosting the sintering resistance of platinum-alumina catalyst via a

morphology-confined phosphate doping strategy

Jinshi Dong, Yutao Zhang, Hongji Zou, Panpan Chang *, Yan Guo * School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China

*Corresponding author. E-mail: <u>changpp@gxust.edu.cn</u> (P. Chang); guoyan56@hotmail.com (Y. Guo).

Fig. S1. SEM images of (a-c) MPO₄ and (d-f) MPO₄mill.

Table S1 ICP results of Pt load	dings for various	catalysts ^a
---------------------------------	-------------------	------------------------

Sample	Pt loading (wt.%)
Pt-Al ₂ O ₃ -400	0.77
Pt-Al ₂ O ₃ -800	0.77
Pt-Al ₂ O ₃ -1000	0.75
Pt-AlPO ₄ -400	0.76
Pt-CePO ₄ -400	0.75
Pt-LaPO ₄ -400	0.75
Pt-AlPO ₄ mill-400	0.76
Pt-CePO ₄ mill-400	0.74
Pt-LaPO ₄ mill-400	0.75
Pt-(Al ₂ O ₃ +AlPO ₄)mill-400	0.75
Pt-(Al ₂ O ₃ +CePO ₄)mill-400	0.73
Pt-(Al ₂ O ₃ +LaPO ₄)mill-400	0.77

^a Pt-Al₂O₃-MPO₄-400 and Pt-Al₂O₃-MPO₄mill-400 catalysts were not measured because of their precise mixing Pt-Al₂O₃ with MPO₄ or MPO₄mill at the weight ratio of 2: 1.

Fig. S2. XRD patterns of AI_2O_3 calcinated at different temperatures.

Fig. S3. XRD patterns of the fresh catalysts.

Fig. S4. XRD patterns of the 800 °C aged catalysts.

Fig. S5. XRD patterns of the 1000 °C aged catalysts.

Table S2 The components and	d phases detected by XRD.
-----------------------------	---------------------------

· · ·			
Sample	Fresh (400 °C)	Aged (800 °C)	Aged (1000 °C)
Pt-Al ₂ O ₃	γ ^a	θ	$\alpha + \theta$
Pt-AlPO ₄	AlPO ₄	AlPO ₄ +Pt	AlPO ₄ +Pt
Pt-CePO ₄	CePO ₄	CePO ₄ +Pt	CePO ₄ +Pt
Pt-LaPO ₄	LaPO ₄	LaPO ₄ -M ^b +Pt	LaPO ₄ -M+Pt
Pt-AlPO ₄ mill	AlPO ₄	AlPO ₄ +Pt	AlPO ₄ +Pt
Pt-CePO ₄ mill	CePO ₄	CePO ₄ +Pt	CePO ₄ +Pt
Pt-LaPO₄mill	LaPO ₄	LaPO ₄ -M+Pt	LaPO ₄ -M+Pt
Pt-Al ₂ O ₃ -AlPO ₄	AlPO ₄ +γ	AlPO ₄ +0+Pt	$AlPO_4+\theta+\alpha+Pt$
Pt-Al ₂ O ₃ -CePO ₄	CePO ₄ +γ	CePO ₄ +0+Pt	$CePO_4+\theta+\alpha+Pt$
Pt-Al ₂ O ₃ -LaPO ₄	LaPO ₄ +γ	LaPO ₄ +0+Pt	$LaPO_4+\theta+\alpha+Pt$
Pt-Al ₂ O ₃ -AlPO ₄ mill	AlPO ₄ +γ	AlPO ₄ +0+Pt	AlPO ₄ +0+Pt
Pt-Al ₂ O ₃ -CePO ₄ mill	CePO ₄ +γ	CePO ₄ +0+Pt	CePO ₄ +0+Pt
Pt-Al ₂ O ₃ -LaPO ₄ mill	LaPO ₄ +γ	LaPO ₄ +0+Pt	LaPO ₄ +0+Pt
Pt-(Al ₂ O ₃ +AlPO ₄)mill	AlPO ₄ +γ+Pt	AlPO ₄ +0+Pt	AlPO ₄ +0+Pt
Pt-(Al ₂ O ₃ +CePO ₄)mill	CePO ₄ +γ+Pt	CePO ₄ +0+Pt	CePO ₄ +0+Pt
Pt-(Al ₂ O ₃ +LaPO ₄)mill	LaPO ₄ +γ+Pt	$LaPO_4 + \theta + Pt$	LaPO ₄ +0+Pt

^a The Greeks stand for the phases of Al_2O_3 ; ^b LaPO₄-M stands for monoclinic LaPO₄ while the initial LaPO₄ is hexagonal.

Scheme S1 The inhibition mechanism for AI_2O_3 phase transformation by MPO_4 upon heating.

Sample	Fresh (400 °C)	Aged (800 °C)	Aged (1000 °C)
Pt-Al ₂ O ₃	257 ^a /263 ^b	378/388	364/384
Pt-AlPO ₄	273/286	400/447	470/552
Pt-CePO ₄	260/273	370/382	536/603
Pt-LaPO ₄	252/272	423/443	427/472
Pt-AlPO ₄ mill	250/268	329/339	376/404
Pt-CePO ₄ mill	259/267	316/354	387/409
Pt-LaPO ₄ mill	238/248	325/336	383/396
Pt-Al2O ₃ -AlPO ₄	272/275	384/395	403/420
Pt-Al ₂ O ₃ -CePO ₄	271/288	373/397	388/402
Pt-A ₂ O ₃ -LaPO ₄	274/282	385/399	376/390
Pt-Al ₂ O ₃ -AlPO ₄ mill	289/303	350/358	350/375
Pt-Al ₂ O ₃ -CePO ₄ mill	291/296	345/362	344/367
Pt-Al ₂ O ₃ -LaPO ₄ mill	295/302	348/362	352/360
Pt-(Al ₂ O ₃ +AlPO ₄)mill	300/310	333/354	401/424
Pt-(Al ₂ O ₃ +CePO ₄)mill	285/297	352/362	354/369
Pt-(Al ₂ O ₃ +LaPO ₄)mill	292/303	318/335	337/357

Table S3 The 50% and 100% conversion temperatures (T_{50} and T_{100}) of CO oxidation for the fresh and aged catalysts **without** H₂ reduction.

^{*a*}T₅₀ (°C); ^{*b*}T₁₀₀ (°C).

Fig. S6. CO oxidation light-off profiles of the fresh catalysts after H_2 reduction (300 °C, in 5% H_2 /Ar). Feed gas stream: 1% CO and 2% O₂ balanced with Ar, flow rate: 500 mL/min. All samples were kept ~0.38 mg Pt by varying different amounts of catalysts.

Fig. S7. (a-e) CO oxidation light-off profiles and (f) Arrhenius plots of the 800 °C aged catalysts after H_2 reduction (300 °C, in 5% H_2 /Ar). Activity tests feed gas stream: 1% CO and 2% O_2 balanced with Ar, flow rate: 500 mL/min. All samples were kept ~0.38 mg Pt by varying different amounts of catalysts.

Fig. S8. (a-e) CO oxidation light-off profiles and (f) Arrhenius plots of the 1000 °C aged catalysts after H_2 reduction (350 °C, in 5% H_2 /Ar). Activity tests feed gas stream: 1% CO and 2% O_2 balanced with Ar, flow rate: 500 mL/min. All samples were kept ~0.38 mg Pt by varying different amounts of catalysts.

Fig S9. XPS spectra of (a,b, c) 800°C and (e, d, f) 1000 °C aged catalysts after H₂ reduction. Blue lines are background data, light gray lines are raw data and red lines are the fitting results of raw data.

Samula	Loading	GHSV	Temperature	TOF	Daf
Sample	(wt %)	$(L g_{cal}^{-1} h^{-1})$	(°C)	(s ⁻¹)	Kel.
Pt-Al ₂ O ₃	0.77	600 (1%) ^a	250	1.15	this work
Pt-LaPO ₄ mill	0.75	600 (1%)	200	1.06	this work
Pt/CeO ₂	0.5	/	200	0.60	[1]
Pt/MnO ₂	0.5	/	200	0.53	[1]
Pt/NiO	0.5	/	200	1.12	[1]
Pt/Fe ₂ O ₃	0.5	/	200	0.15	[1]
$Pt/m-Al_2O_3-H_2$	0.2	48 (2.5%)	200	0.023	[2]
$Pt/m-Al_2O_3-H_2$	0.2	48 (2.5%)	250	0.175	[2]
Commer. Pt/Al ₂ O ₃	5.0	48 (2.5%)	200	0.443	[2]
Pt/0-Al ₂ O ₃	0.18	/ (3.7%)	200	0.013	[3]
Pt/0-Al ₂ O ₃	0.18	/ (3.7%)	251	0.187	[3]
Pt/Al ₂ O ₃ -CeO ₂	1.0	232.5 (1.9%)	225	0.17	[4]
Pt/α - Al_2O_3	5.0	/ (1%)	150	0.22	[5]
PtO _x /KLTL	1.0	/ (1%)	150	0.012	[6]
Pt(NH ₃) ₄ ²⁺ /KLTL	1.0	/ (1%)	150	0.0038	[6]
Pt-O-Pt/CeO ₂	0.27	2400 (0.1%)	150	1.97	[7]

Table S4 Comparison of the CO oxidation rates per platinum atom site (turnover frequency, TOF) for various platinum based catalysts (fresh samples) from literature and in this work.

^a The data in () are the volume concentrations of CO in the feed gases. The dispersions measured by CO-chemisorption for $Pt-Al_2O_3$ -400 and $Pt-LaPO_4$ mill-400 were 32.3% and 49.7%, respectively.

Table S5 T_{50} and T_{100} of CO oxidation reaction for the aged Pt-Al₂O₃-LaPO₄mill catalysts with different mix ratios (after H₂ reduction).

Sample	800°C aged	1000°C aged
Pt-Al ₂ O ₃ -LaPO ₄ mill-(1:1)	329/343	352/368
Pt-Al ₂ O ₃ -LaPO ₄ mill-(2:1)	304/315	337/347
Pt-Al ₂ O ₃ -LaPO ₄ mill-(4:1)	354/366	364/376

 aT_{50} (°C); bT_{100} (°C).

Fig. S10. XRD patterns of the aged $Pt-Al_2O_3-LaPO_4$ mill catalysts with different mix ratios. The intensity of Pt corresponds to its particle size.

Table S6 BET surface areas (m² g⁻¹) and reaction rate (mmol_{CO} s⁻¹ g_{Pt}⁻¹) of the Pt-Al₂O₃-LaPO₄mill catalysts with different mix ratios.

	BET 400°C	BET 800°C	BET 1000℃	reaction rate ^a
Sample	fresh	aged	aged	
Pt-Al ₂ O ₃ -LaPO ₄ mill-(1:1)	100	89	63	0.69
Pt-Al ₂ O ₃ -LaPO ₄ mill-(2:1)	119	101	68	2.08
Pt-Al ₂ O ₃ -LaPO ₄ mill-(4:1)	132	107	72	0.50

^a Calculated by the reaction rates all at 325 °C.

Fig. S11. The changes of H_2O contents with elevated temperatures during the CO oxidation reactions with 5% H_2O .

Table S7 BET surface areas (m ² g ⁻¹	^ւ) of the 1050 °C h	vdrothermally aged	catalysts.
--	---------------------------------	--------------------	------------

Sample	BET (m ² g ⁻¹)
Pt-Al ₂ O ₃ -1050H	15
Pt-Al ₂ O ₃ -AlPO ₄ mill-1050H	67
Pt-Al ₂ O ₃ -CePO ₄ mill-1050H	52
Pt-Al ₂ O ₃ -LaPO ₄ mill-1050H	56
Pt-LaPO ₄ mil-1050H	12
Pt-Al ₂ O ₃ -LaPO ₄ -1050H	28

Fig. S12. TEM images of (a) Pt-Al₂O₃-1050H and (b) Pt-Al₂O₃-LaPO₄mill-1050H.

References

[1] An, K., et al. Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. J. Am. Chem. Soc. 2013, 135, 16689-16696.

[2] Zhang, Z. et al. Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO

oxidation. Nat. Commun. 2017, 8, 16100.

[3] Moses-DeBusk, M. *et al.* CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al₂O₃(010) surface. *J. Am. Chem. Soc.* **2013**, 135, 12634-12645.

[4] Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science **2016**, 353, 150-154.

[5] Kale, M. J., Christopher P. Utilizing quantitative in situ FTIR spectroscopy to identify wellcoordinated Pt atoms as the active site for CO oxidation on Al₂O₃-supported Pt catalysts. ACS Catal. **2016**, 6, 5599-5609.

[6] Kistler, J. D. et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. *Angew. Chem. Int. Ed.* **2014**, 53, 8904-8907.

[7] Wang, H., et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. **2019**, 10, 3808.