Appendix A. Supplementary data

A Perovskite CaZrO₃ for Efficient Ozonation Treatment of Organic

Pollutants in Wastewater

Peiwei Han^{a,b,1}, Hongxia Lv^{a,1}, Xiaogang Li^a, Shengzhe Wang^b, Zhilian

Wu^{c,d}, Xiangnan Li^e, Zhao Mu^a, Xinjun Li^e, Chenglin Sun^b, Huangzhao Wei

^{b,*}, Lei Ma ^{a,*}

^a Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical

Technology, Beijing 102617, Beijing, China

^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Dalian, China

^c Ningbo Fengcheng Advanced Energy Materials Research Institute Co., Ltd., Ningbo

315500, Zhejiang, China

^d College of Materials Science and Engineering, Shenzhen University, Shenzhen

518055, Guangdong, China

^e Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences,

Guangzhou, 510640, Guangzhou, China

Summary: This file contains 6 pages, including 6 figures and 1 table.

Text S1 Characterization methods

The crystal structure was characterized by X-ray diffraction measurement (XRD, Empyrean-100, Dutch PANalytical Company) at room temperature with the scanning angular range of 10°-90°. The morphologies of the catalysts were observed using a field-emission scanning electron microscope (SEM, Quante400F (FEI)) with the operating voltage of 20 kV. The morphologies and structures of catalysts were further analyzed by transmission electron microscopy. A high-resolution transmission electron microscope (HRTEM) was used to analyze the structure of the catalyst using a JEM-2100F high-resolution transmission electron microscope manufactured by JEOL, with an acceleration voltage of 120 kV. The X-rays photoelectron spectroscopy (XPS) measurement was carried out on AVGESCALAB 250 spectrometer using a nonmonochromatized Al K X-ray source at eV= 1.602 imes 10 ⁻¹⁹ J and 1bar =100 kPa (1486.6 eV). The electron paramagnetic resonance (EPR) experiments using a Bruker EPR A300 spectrometer were carried out for the determination of reactive intermediates generated in catalytic ozonation. A catalyst solution of 1000mg/L and a HAC/NaAC buffer solution of 2mM PH=4 was prepared. 200 microliter sample solution was taken, 500 microliter buffer solution was added, and ozone was injected at a flow rate of 37mL/min at 130 mg/L. Shake well and add 100 microliters of DMPO or TEMP (trapping agent) solution of 1M. After mixing well, a specific volume of the sample solution was transferred immediately into a capillary tube, and EPR spectra were recorded at room temperature under the following Operating conditions: EPR Spectra using DMPO: modulation frequency = 100 GHz, sweep width = 100.0 G, microwave power = 18.11 mW, microwave frequency = 9.87 GHz and Centerfield = 3360.0 G. Operating conditions using TEMP: sweep width = 100 G, Centerfield = 3510 G, modulation frequency = 100 GHz, microwave power: 18.11 mW, modulation frequency = 100 GHz, microwave frequency = 9.87GHz.

Text S2 Stability evaluation condition

The catalyst used for stability evaluation was $CaZrO_3$ -PEG_{10 wt%}, and the powder was pressed into tablets. After the tablet was pressed, 100mL was weighed with a

measuring cylinder and loaded into the reactor for evaluation. Reaction conditions: Substrate: m-cresol (100 mg·L⁻¹); the pH is not adjusted; influent flow of 100 mL·h⁻¹; continuous flow of ozone through 37 mL·min⁻¹, concentration of 130 mg·L⁻¹.

Fig.S1. TEM images of CaZrO₃-PEG_{0 wt%} (a-b) and CaZrO₃-PEG_{10 wt%} (c-d)

Fig.S3. The N₂ adsorption-desorption isotherms of CaZrO₃-PEG_{0 wt%} and CaZrO₃-PEG_{10 wt%}

Fig. S4. Evaluation result of different types of catalysts on catalytic ozonation of m-cresol wastewater.

Substrate: 100 mg • L⁻¹ m-cresol. Catalyst concentration:5g • L⁻¹, wastewater volume: 200 mL, ozone flow rate: 37 mL • min⁻¹, ozone concentration: 130 mg • L⁻¹, reaction time: 20 min

Fig. S5. GC-MS spectrum of CaZrO3 catalyzed degradation of m-cresol by ozonation

Fig. S6. (a) CaZrO₃ catalyst for continuous catalytic ozone oxidation; (b) Continuous results of catalytic oxidation of CaZrO₃

Catalytic	Ca 2p		Zr 3d		O 1s	
	Ca 2p _{3/2}	Ca 2p _{1/2}	Zr 3d _{5/2}	Zr 3d _{3/2}	OL	O _A /OV
CaZrO ₃ -PEG _{0 wt%}	77.55%	22.45%	58.39%	41.61%	43.95%	56.05%
CaZrO ₃ -PEG _{2.5 wt%}	77.59%	22.41%	58.18%	41.82%	44.15%	55.85%
CaZrO ₃ -PEG _{5 wt%}	77.34%	22.66%	57.16%	42.84%	41%	59%
CaZrO ₃ -PEG _{7.5 wt%}	77.57%	22.43%	57.18%	42.82%	39.73%	60.27%
CaZrO ₃ -PEG _{10 wt%}	73.32%	26.68%	44.47%	55.53%	27.22%	72.88%

Table.S1 Ca 2p, Zr 3d and O 1s concentration of XPS spectra of CaZrO₃