Supporting information

Cu/ZnO_x@UiO-66 synthesized from a double solvents method as an

efficient catalyst for CO₂ hydrogenation to methanol

Yang Yang,[‡]^a Yanan Xu,[‡]^a Heng Ding,^a Dong Yang,^a Enping Cheng,^a Yiming Hao,^a Hongtao Wang,^a Yanzhen Hong,^a Yuzhong Su,^a Yanliang Wang,^{*}^a Li Peng,^{*}^a Jun Li^{*a, b, c}

^{b.} National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China.

^{a.} College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

^c Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen 361005, China.

E-mail: ylwang@xmu.edu.cn, li.peng@xmu.edu.cn, junnyxm@xmu.edu.cn

[‡] These authors contributed equally.

[†] Electronic Supplementary Information (ESI) available: characterization. See DOI: 10.1039/b000000x/

1. Loading Zn on MOF(UiO-66)

Figure S1. FT-IR spectra of UiO-66.

Figure S2. GC-MS results of THF solution which was left from the step of loading Zn with Zn(Et)₂.

$$(Zr_3)\mu_3-OH + ZnEt_2 \rightarrow (Zr_3)\mu_3-O-Zn-Et + C_2H_6$$
(1-1)

$$ZnEt_2 + Cu(II) \rightarrow Zn(II) + Cu(0) + C_4H_{10}$$
(1-2)

The disappearance of (O-H) FT-IR peak at 3662 cm⁻¹ in the SBUs and appearance of C_2H_6 in the THF solution can verify the correctness of the above equations.

2. H₂-TPR of Cu/ZnO_x@UiO-66

Figure S5. TEM pattern of Cu/ZnO on UiO-66.

Figure S6. The conversion rate and selectivity of Cu/ZnO on UiO-66.

(P=4.0 MPa, GHSV=12000 h⁻¹)

4. XRD patterns and TEM of catalyst Cu@UiO-66

Figure S7. XRD and TEM patterns of Cu@UiO-66.

5. The structure diagram of the reaction tube

Figure S8. The structure diagram of the reaction tube.

Figure S9. The XRD patterns of Cu/ZnO_x@UiO-66 before (black) and after the

reaction (red).

7. Table S1. Comparison with copper-based representative catalysts for the	е
hydrogenation of CO_2 to methanol	

	Cu (wt.%)	Gas Flow	CO ₂ conv. (%)	Select. (%)	STY (kg _{MeOH} kg _{Cu} ⁻¹ h ⁻¹)	TOF×10 ³ (s ⁻¹)	STY (g _{MeOH} kg _{Cat} ⁻¹ h ⁻¹)
Cu/ZnO _x @UiO-66	5.86	18000(h ⁻¹)	3.00	87.5	1.66	6.62	97.3
(In this work)	5.86	12000(h ⁻¹)	3.51	86.1	1.27	5.08	74.4
	5.86	6000(h ⁻¹)	4.39	84.2	0.78	3.12	45.7
	5.86	1500(h ⁻¹)	7.33	82.4	0.32	1.28	18.8
Cu@UiO-66	6.65	12000(h ⁻¹)	1.72	60.2	0.38	1.53	25.2
Cn/ZnO on UiO-66	6.21	12000(h ⁻¹)	0.44	85.3	0.15	0.48	9.3
Cu/ZnO/Al ₂ O ₃	50.13	12000(h ⁻¹)	9.72	47.2	0.23	-	115.3
	50.13	6000(h ⁻¹)	10.24	40.1	0.10	-	50.1
Cu-ZnO-Al ₂ O ₃ * (3 MPa, 250 °C) ¹	50.8	2600 (mL/g _{cat} /h)	6.30	68.6	0.09		44.7
Cu/Zn@UiO-bpy (4 MPa, 250 °C) ²	6.9	18000(h ⁻¹)	3.3	100	2.59	2.96	U.
Cu⊂UiO-66 (1MPa , 175 °C) ³		28sccm	3	100	-	3.7	
Cu@ZnO _x (core-shell) (3 MPa, 250 °C) ⁴		18000(h ⁻¹)	2.3	100	-		147.2
La _{0.8} Zr _{0.2} Cu _{0.7} Zn _{0.3} O _x (5 MPa, 250 °C) ⁵		3600(h ⁻¹)	12.6	52.5	-		100.0
Pd-Cu/SBA-15 (4.1 MPa, 250 °C) ⁶	10	3600(h ⁻¹)	6.5	23	0.23	-	23.0
Pd-Cu/SiO ₂ (4.1 MPa, 250 °C) ⁶	10	3600(h ⁻¹)	6.6	34	0.36	-	35.7
LDH30Ga (4.5 MPa, 270 °C) ⁷	33.5	18000 (mL/g/h)	~20	~48	1.76	-	590.0
C6Z3Z1-OX (3 MPa, 240 °C) ⁸	45.4	10000(h ⁻¹)	18.0	51.2	0.67	-	305.0

* Commercial benchmark catalyst. In this work, reaction condition: T = 250 °C, P = 4.0 MPa $(H_2/CO_2=3)$.

References

- 1. X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du and P. A. Webley, Chem. Eng. J., 2019, 378.
- 2. B. An, J. Zhang, K. Cheng, P. Ji, C. Wang and W. Lin, J. Am. Chem. Soc., 2017, 139, 3834-3840.
- 3. Rungtaweevoranit, J. Baek, J. R. Araujo, B. S. Archanjo, K. M. Choi, O. M. Yaghi and G. A. Somotjai, Nano Lett., 2016, 16, 7645-7649.
- 4. A. Le Valant, C. Comminges, C. Tisseraud, C. Canaff, L. Pinard and Y. Pouilloux, J. Catal., 2015, 324, 41-49.
- 5. H. Zhan, F. Li, P. Gao, N. Zhao, F. Xiao, W. Wei, L. Zhong and Y. Sun, J. Power Sources, 2014, 251, 113-121.
- 6. X. Jiang, N. Koizumi, X. Guo and C. Song, Appl. Catal., B, 2015, 170-171, 173-185.
- M. M. J. Li, C. Chen, T. Ayvalı, H. Suo, J. Zheng, I. F. Teixeira, L. Ye, H. Zou, D. O'Hare and S. C. E. Tsang, ACS Catal., 2018, 8, 4390-4401.
- 8. G. Bonura, M. Cordaro, C. Cannilla, F. Arena and F. Frusteri, *Appl. Catal., B*, 2014, **152**, 152-161.