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Generally, the porous structure can be obtained by using silica nanoparticles as hard templates 

[s1-s3]. However, the hard template removal process usually brings the hazardous and toxic issues. 

As an alternative, the soft template method is a more facile and simple way to fabricate the porous 

structure. Hou et al. reported that a worm-like porous carbon nitride synthesized by using Pluronic 

P123 as soft-template [s4]. Li et al. could obtain hierarchically porous carbon nitride by using 

polyurethane as single template [s5]. One-step pyrolysis treatment of dicyandiamide and 

ammonium persulphate can also be applied for the formation of porous carbon nitride [s6]. In 

addition, the soft template method can also be performed to prepare ultrathin carbon nitride, e.g. 

we can obtain a single atomic layered carbon nitride nanosheets in large scale by using 

polyacrylamide (PAM) as the template with melamine precursor [s7].

First, XRD characterization was carried out to investigate the effects of PVP template content 

and heating period on the crystal structure of carbon nitride samples. As presented in Fig. S1a-b, 

all the XRD patterns show two characteristic peaks located at about 12.6° and 27.4°, corresponding 

to the 100 and 002 crystal planes, respectively. Then, the morphology of samples was observed 

through TEM images (Fig. S2a-b). It is clear that the size and number of holes increase with 

increasing the concentration of PVP precursor and extending the heating time. The absorption in 

visible light region also increase with the increase content of PVP (Fig. S3a), while the extension 

of heating time results in a slight blue-shift of DRS curve (Fig. S3b). Moreover, as shown in Fig. 

S4a-b, PL spectra suggest that the increase content of PVP and extended heating time benefit for 

the separation of photogenerated electron-hole pairs. More PVP precursor and longer heating time 

show positive effects on the degradation of RhB dyes solution over carbon nitride photocatalyst 

(Fig. S5a-b). Therefore, the porous carbon nitride nanosheets is prepared by using 10 g of 

melamine and 500 mL of PVP (100 g L-1) as precursors and heating the mixture at 550 ºC for 8
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h. Then, the following investigation was carried out based on the comparison between the porous 

carbon nitride with the optimal preparation (CN-PVP) and pristine one (BCN).

Fig S1. XRD patterns of BCN and all the CN-PVP samples with (a) different content of PVP 

precursors after heating at 550 °C for 4 h or (b) the same 2 g/L of PVP but different keeping time 

at 550 °C.
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Fig S2. TEM images of carbon nitride samples with (a) different content of PVP precursors after 

heating at 550 °C for 4 h or (b) the same 2 g/L of PVP but different keeping time at 550 °C.
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Fig S3. UV-vis absorption spectra of carbon nitride samples with (a) different content of PVP 

precursors after heating at 550 °C for 4 h or (b) the same 2 g/L of PVP but different keeping time 

at 550 °C.
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Fig S4. PL spectra of carbon nitride samples with (a) different content of PVP precursors after 

heating at 550 °C for 4 h or (b) the same 2 g/L of PVP but different keeping time at 550 °C.
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Fig S5. Photocatalytic degradation of RhB dyes solution over carbon nitride with (a) different 

content of PVP precursors after heating at 550 °C for 4 h or (b) the same 2 g/L of PVP but different 

keeping time at 550 °C. Light source: white LED lamp; photocatalyst amount: (a) 5 mg and (b) 30 

mg; RhB dyes solution: 20 mg/L, 50 mL.
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Fig S6. Residual amount of PVP after heating at 450 °C for different time.

Fig S7. (a) N2 absorption-desorption isotherms and (b) the corresponding pore diameter 
distributions of BCN and CN-PVP.
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Fig S8. EPR spectra of BCN and CN-PVP.

Fig S9. Time courses of (a) H2 and (b) NH3 evolution over different carbon nitride samples under 
white LED lamp irradiation.
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Fig S10. TEM images of CN-PVP after cycling experiment.

Fig S11. Plots of (αhv)0.5 versus the energy of exciting light.
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Table S1 Combustion elemental analysis results of BCN and CN-PVP.

Samplea Mass content (%)

C N H C/N

1H 34.1 59.3 1.6 0.574

2H 34.2 59.0 1.6 0.580

BCN 34.9 59.8 1.6 0.584

3H 34.1 58.2 1.6 0.586

4H 34.4 58.5 1.6 0.588

4G 34.6 58.7 1.6 0.590

6G 34.5 58.3 1.7 0.591

6H 34.2 57.8 1.7 0.592

10G 34.1 57.4 1.9 0.594

8H 34.8 58.3 2.0 0.596

40G 34.4 57.7 2.1 0.597

100G 34.6 57.4 2.2 0.603

CN-PVP 34.7 57.4 2.2 0.606

a. xH: samples were synthesized under different holding time but adding the same PVP (2 g L-

1), yG: samples were synthesized under the same 4 h holding time but using different PVP 
precursors (y g L-1), all the samples were heated at 823 K.
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Table S2. Photocatalytic H2 evolution of typical carbon nitride porous nanosheets.

Ref. Photocataly
st (mg)

Water 
(mL)

TEOA
(vol.%)

Pt 
(wt.%)

H2 evolution AQY
(%) at

rate (μmol h-1) 420 nm

This 
work

100 100 10 1 297.6 12.7

s8 50 280 10 3 195.8 6.1

s9 100 300 10 3 132.3 7.45

s10 20 120 10 3 60.2 7.8

s11 10 25 10 3 82.9 --

s12 100 300 10 3 107.8 --

s13 20 50 10 3 57.2 --

s14 50 120 10 3 98.4 10.7

s15 10 100 10 3 20.9 1.46

s16 50 80 15 3 200 14.65

s17 15 20 10 - 90 --

s18 30 80 10 1 11.6 8.54

s19 50 100 10 5 81.7 8.29

s20 50 100 10 1 64.3 12.06

s21 20 100 20 1 159.8 9.8

s22 50 100 20 3 180.63 8.6

s23 50 -- 20 1 79.8 3.56

s24 50 100 10 3 189.3 --

s25 50 200 10 5 44.6 6.84

s26 50 50 20 3 155 28

s27 10 80 10 3 12.71 --
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Table S3. Summary of the relationship between photocatalytic activity and the ratio of C/N over 

all carbon nitride samples.

Samplea C/Nb H2 
evolution

ratec

Dyes degradationd 

(1-C/C0, %)

(μmol h-1) MB RhB MO Phenol

1H 0.574 17.2 30.3 40.8 6.4 0.6

2H 0.580 27.3 30.3 55.3 10.9 1.0

BCN 0.584 31.2 30.8 58.1 11.0 4.2

3H 0.586 35.1 31.6 63.1 12.2 4.5

4H 0.588 43.9 30.5 75.1 13.9 8.1

4G 0.590 57.5 35.7 86.7 15.5 10.7

6G 0.591 69.9 37.5 89.5 18.2 14.0

6H 0.592 72.3 32.1 89.3 15.8 13.1

10G 0.594 100.6 42.9 87.9 19.9 23.3

8H 0.596 93.5 44.0 88.7 21.3 25.7

40G 0.597 128.7 44.8 92.0 18.2 26.8

100G 0.603 140.0 46.0 93.4 22.9 29.2

CN-PVP 0.606 297.6 76.1 95.0 26.3 36.9

a. xH: samples were synthesized under different holding time but adding the same PVP (2 g L-

1), yG: samples were synthesized under the same 4 h holding time but using different PVP 
precursors (y g L-1), all the samples were heated at 823 K.

b. The weight ratio of carbon to nitrogen is monitored by combustion elemental analysis.

c. Photocatalytic water splitting reaction condition: 100 mg of Pt (1.0 wt.%)-sample, 100 mL of 
TEOA (10 vol.%) aqueous solution, an outer irradiation quartz reactor, white LED lamp (100 mW 
cm-2, 365~940 nm).

d. Dyes degradation reaction condition: 30 mg sample, 50 ml of dyes aqueous solution (10 mg L- 

1).
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Table S4. Fractions of C 1s XPS spectra.

Sample Peak location (eV)

288.1(N-C=N) 286.2(C-NHx) 284.6(C-C)

BCN 0.7 0 0.3

CN-PVP 0.6 0.1 0.3

Table S5. Fractions of N 1s XPS spectra.

Sample Peak location (eV)

398.6(C-N=C) 400.1(N-(C)3) 401.2(C-NHx) 404.3

BCN 0.6 0.2 0.1 0.1

CN-PVP 0.6 0.1 0.2 0.1
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