Boosting Performance by Water Solvation Shell with Hydrogen Bonds on Protonic Ionic Liquid: Insights into the Acid Catalysis of Glycosidic Bond

Kaixin Li^a, Limin Deng^a, Shun Yi^a, Yabo Wu^a, Guangjie Xia^{b*}, Jun Zhao^{c*}, Dong

LU^d, Yonggang Min^a*

^aSchool of Materials and Energy, Center of Emerging Material and Technology, Guangdong University of Technology, Guangzhou 510006, China

^bDepartment of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China

^cInstitute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong SAR

^dCenter for Engineering Materials and Reliability, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong 511458, China

Fig. S1. The six IL models implemented with a periodic cubic box of 20 Å filled with explicit water molecules. The color are the same with those in Fig. 4. The solvent waters are presented in transparency. The configurations are stable ones, which are obtained by AIMD of 20 ps and annealing of 3 ps followed by further optimization.

Fig. S2. The temperature-dependent changes of C-H chemical shifts for a) IL-1; b) IL-2; c) IL-3; d) IL-4; e) IL-5 in H₂O at the concentration of 0.5 mol L^{-1} .

Fig. S3. The models involving one molecule of cellobiose and one molecule of catalyst (H_2SO_4 or IL-1) are simulated within a periodic cubic box of 20 Å filled with explicit water molecules. The colours are the same as those in Fig. 4. The solvent waters are presented in transparency. The configurations are stable ones, which are obtained by AIMD of 20 ps and annealing of 3 ps followed by further optimization.

Fig. S4. The UV-vis spectrum of IL1-IL 5 in aqueous probe solution.

Fig. S5. The average O-H distance (dOH) and C-O bond distance (dOC) during the AIMD calculation with constrain of different value of CV.

Figure S6. Convergence Test of the statistic time on (a) free energy and (b) free energy gradient. The statistic times to get the free energy gradient and free energy curve increase from 2.5 ps to 10.0 ps. The trajectories of the first 2 ps before the statistic not used to make

the system to reach the equilibrium. The error bar represents the standard error of the mean (SEM) of each point.

Figure S7. The comparison on the integral directions during the calculation of free energy curve. (a) Integrate from reactant to product; (b) Integrate from product to reactant. The error bar represents the standard error of the mean (SEM) of each point.

IL-1:								
		2	3 4	6				
			100		S	D_3H		
	1 (N	\sim	\sim			
			//	5	7	Θ		
					S	O4H		
IL-1	T	1	2	3	4	5	6	7
	298K	7.1	7.9	5.6	7.5	7.7	7.8	7.6
	308K	7.1	7.9	5.5	7.4	7.7	7.7	7.6
J(11Z)	318K	7.1	7.9	5.5	7.4	7.6	7.7	7.6
	328K	7.0	7.9	5.5	7.1	7.5	7.6	7.5
	298K	7.88	8.35	8.65	4.45	1.97	1.60	2.76
S(nnm)	308K	7.96	8.43	8.73	4.53	2.05	1.68	2.84
o(ppm)	318K	8.08	8.55	8.84	4.65	2.17	1.79	2.95
	328K	8.18	8.65	8.93	4.75	2.27	1.89	3.05
$\Delta\delta/\Delta T(ppd/K)$		10.2	10.2	9.5	10.2	10.2	9.8	9.8

Table S1. The ¹H NMR parameters for the six ILs

IL-2:

IL-2	Т	1	2	3	4	5	6	7	8
	298K	-	-	1.5	1.4	7.1	7.05	7.92	7.50
$I(H_{z})$	308K	-	-	1.4	1.4	7.1	7.12	8.04	7.27
J(IIZ)	318K	-	-	1.4	1.3	7.1	7.16	8.59	7.83
	328K	-	-	1.4	1.3	7.1	7.3	7.93	7.65
	298K	3.63	8.46	7.24	7.18	3.99	1.76	1.48	2.68
S(nnm)	308K	3.74	8.56	7.34	7.29	4.09	1.87	1.59	2.79
o(ppin)	318K	3.86	8.66	7.46	7.41	4.21	1.99	1.71	2.90
	328K	3.97	8.75	7.56	7.51	4.31	2.09	1.82	3.00
$\Delta\delta/\Delta T(ppd/K)$		11.4	9.7	10.8	11.1	10.8	11.1	11.4	10.7

IL-3:									
		2							
				-	5				
4 6 SO3H									
		/		⊖ SO4H					
IL-3	Т	1		2	3	4		5	6
	298	7.1		7.2	7.9	7.0	(5.8	7.5
	308	7.2	م ا	7.2	8.0	7.0	(5.5	7.45
J(HZ)	318	7.2	, ,	7.2	8.0	7.1	(5.6	7.4
	328	7.2	م ا	7.2	8.1	7.2	(5.7	7.35
	298	1.14	3	.19	3.11	1.68	1	.62	2.59
S(mmm)	308	1.16	3	.21	3.12	1.70	1	.64	2.61
o(ppm)	318	1.17	3	.22	3.13	1.71	1	.65	2.62
	328	1.18	3	.23	3.14	1.73	1	.66	2.63
$\Delta\delta/\Delta T(ppd/K)$		1.3	1	1.3	1	1.6	-	1.3	1.3
				IL-4:					
		2	3	4	6	8			
			_/	\wedge	\wedge	/			
		1 (Ň	€ `	\bigvee	\checkmark			
		//	//		5	7			
		<u> </u>		S	Ö4H				
IL-4	Т	1	2	3	4	5	6	7	8
	298	7.9	7.0	5.5	7.4	2.3	2.7	7.5	7.1
	308	7.9	7.0	5.5	7.4	2.3	1.9	7.5	7.1
J(HZ)	318	7.9	6.9	5.6	7.4	2.4	3.2	7.5	7.1
	328	7.8	6.8	5.8	7.4	2.5	3.2	7.5	7.1

	308	7.9	7.0	5.5	7.4	2.3	1.9	7.5
J(IIZ)	318	7.9	6.9	5.6	7.4	2.4	3.2	7.5
	328	7.8	6.8	5.8	7.4	2.5	3.2	7.5
	298	8.36	7.89	8.66	4.43	1.16	1.12	1.83
S(mmm)	308	8.48	8.00	8.77	4.54	1.27	1.23	1.95
o(ppm)	318	8.58	8.12	8.88	4.65	1.39	1.34	2.06
	328	8.70	8.22	8.97	4.75	1.49	1.45	2.16
$/\Delta T(ppd/K)$		11.2	11.1	10.4	10.7	11.1	11	11

 $\Delta\delta/\Delta T(ppd/K)$

0.67 0.78

0.90 1.00

11.1

IL-5	Т	1	2	3	4	5	6	7	8	9
	298	-	-	1.8	1.7	7.1	5.8	5.3	7.2	7.2
	308	-	-	1.7	1.7	7.2	8.1	8.2	7.2	7.2
J(HZ)	318	-	-	1.8	1.7	7.2	8.2	7.3	7.3	7.2
	328	-	-	1.7	1.6	7.2	6.4	7.1	7.3	7.2
	298	3.71	8.52	7.30	7.25	4.01	1.15	1.10	1.69	0.68
S(nnm)	308	3.83	8.62	7.41	7.36	4.12	1.25	1.20	1.80	0.79
o(ppm)	318	3.95	8.73	7.52	7.48	4.24	1.37	1.32	1.92	0.91
	328	4.05	8.82	7.63	7.59	4.34	1.49	1.43	2.02	1.02
$\Delta\delta/\Delta T(ppd/K)$		11.4	10.1	11	11.4	11.1	11.4	11.1	11.1	11.4

IL-6:

IL-6	Т	1	2	3	4	5	6	7
	298	7.3	7.3	8.2	8.4	7.0	7.8	7.2
	308	7.3	7.3	9.0	8.4	7.1	7.8	7.2
J(HZ)	318	7.3	7.3	9.1	8.4	6.8	7.7	7.2
	328	7.3	7.3	8.2	8.3	7.0	7.7	7.2
	298	1.21	3.22	3.07	1.36	1.30	1.61	0.91
S(mmm)	308	1.22	3.22	3.07	1.37	1.31	1.62	0.91
o(ppm)	318	1.23	3.23	3.08	1.38	1.32	1.63	0.92
	328	1.27	3.27	3.12	1.41	1.36	1.67	0.95
$\Delta\delta/\Delta T(ppd/K)$		1.9	1.6	1.6	1.6	1.9	1.9	1.3

Reaction with IL-1										
CV:	Free Energy	S.D. [†] of	SEM [‡] of	Free Energy	SEM of Free					
d_{OC} - d_{OH}	Gradient	(dA/dCV)	(dA/dCV) /	(A) / (kcal	Energy					
(Å)	(dA/dCV) /	/ (kcal	(kcal mol ⁻¹	mol ⁻¹)	/(kcal mol ⁻¹)					
	(kcal mol ⁻¹ Å ⁻¹)	mol ⁻¹ Å ⁻¹)	Å-1)							
-1.05	0.7281	7.9854	0.0799	0.0000	0.0000					
-0.59	0.2994	9.4805	0.0948	0.1377	0.0367					
-0.13	7.0698	8.1512	0.0815	3.3898	0.0803					
0.33	11.8500	4.3167	0.0432	8.8408	0.1178					
0.79	2.9083	7.9422	0.0794	10.1786	0.1377					
1.25	0.6242	10.3528	0.1035	10.4658	0.1742					
1.71	-0.5243	11.3452	0.1135	10.2246	0.2219					
2.17	-2.2049	10.3412	0.1034	9.2104	0.2740					
2.63	0.3369	12.1284	0.1213	9.3653	0.3216					
3.09	0.4851	13.1157	0.1312	9.5885	0.3774					
3.55	-0.3228	11.8799	0.1188	9.4400	0.4377					
Reaction with H ₂ SO ₄										
Reaction with	H_2SO_4									
CV:	Free Energy	S.D.† of	SEM [‡] of	Free Energy	SEM of Free					
CV: d _{oc} -d _{oH}	Free Energy Gradient	S.D. [†] of (dA/dCV)	SEM [‡] of (dA/dCV)/	Free Energy (A) / (kcal	SEM of Free Energy					
CV: d _{OC} -d _{OH} (Å)	Free Energy Gradient (dA/dCV) /	S.D. [†] of (dA/dCV) / (kcal	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹	Free Energy (A) / (kcal mol ⁻¹)	SEM of Free Energy /(kcal mol ⁻¹)					
CV: d _{OC} -d _{OH} (Å)	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹)	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹)	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹)	Free Energy (A) / (kcal mol ⁻¹)	SEM of Free Energy /(kcal mol ⁻¹)					
CV: doc-doH (Å) -1.11	Free Energy Gradient (dA/dCV) / (kcal mol-1 Å-1) 1.8253	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638	Free Energy (A) / (kcal mol ⁻¹) 0.0000	SEM of Free Energy /(kcal mol ⁻¹) 0.0000					
CV: doc-doH (Å) -1.11 -0.66 -0.66	H_2SO_4 Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290					
Кеасной with CV: d _{OC} -d _{OH} (Å) -1.11 -0.66 -0.20	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703 4.4861	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687					
CV: doc-doH (Å) -1.11 -0.66 -0.20 0.25 -25	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703 4.4861 19.2043	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053					
Reaction with CV: d _{OC} -d _{OH} (Å) -1.11 -0.66 -0.20 0.25 0.71	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703 4.4861 19.2043 5.3013	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306					
Кеасной with CV: d _{OC} -d _{OH} (Å) -1.11 -0.66 -0.20 0.25 0.71 1.16	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703 4.4861 19.2043 5.3013 1.8924	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355 10.3071	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724 0.1031	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303 13.9894	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306 0.1635					
Reaction with CV: doc-doH (Å) -1.11 -0.66 -0.20 0.25 0.71 1.16 1.61	Free Energy Gradient (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 1.8253 -0.0703 4.4861 19.2043 5.3013 1.8924 -0.0490	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355 10.3071 9.9994	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724 0.1031 0.1000	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303 13.9894 13.9672	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306 0.1635 0.2103					
Reaction with CV: d _{OC} -d _{OH} (Å) -1.11 -0.66 -0.20 0.25 0.71 1.16 1.61 2.07	H_2SO_4 Free Energy Gradient $(dA/dCV) /$ $(kcal mol^{-1} Å^{-1})$ 1.8253 -0.0703 4.4861 19.2043 5.3013 1.8924 -0.0490 -3.7164	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355 10.3071 9.9994 11.4453	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724 0.1031 0.1000 0.1145	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303 13.9894 13.9672 12.2799	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306 0.1635 0.2103 0.2557					
Кеасной with CV: d _{OC} -d _{OH} (Å) -1.11 -0.66 -0.20 0.25 0.71 1.16 1.61 2.07 2.52	H_2SO_4 Free Energy Gradient $(dA/dCV) /$ $(kcal mol^{-1} Å^{-1})$ 1.8253 -0.0703 4.4861 19.2043 5.3013 1.8924 -0.0490 -3.7164 -0.5527	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355 10.3071 9.9994 11.4453 10.8724	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724 0.1031 0.1000 0.1145 0.1087	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303 13.9894 13.9672 12.2799 12.0290	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306 0.1635 0.2103 0.2557 0.3076					
Reaction with CV: doc-doH (Å) -1.11 -0.66 -0.20 0.25 0.71 1.16 1.61 2.07 2.52 2.98	H_2SO_4 Free Energy Gradient $(dA/dCV) /$ $(kcal mol^{-1} Å^{-1})$ 1.8253 -0.0703 4.4861 19.2043 5.3013 1.8924 -0.0490 -3.7164 -0.5527 -1.3432	S.D. [†] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 6.3805 8.7512 8.0554 5.5844 7.2355 10.3071 9.9994 11.4453 10.8724 12.7005	SEM [‡] of (dA/dCV) / (kcal mol ⁻¹ Å ⁻¹) 0.0638 0.0875 0.0806 0.0558 0.0724 0.1031 0.1000 0.1145 0.1087 0.1270	Free Energy (A) / (kcal mol ⁻¹) 0.0000 -0.0319 2.0048 10.7235 13.1303 13.9894 13.9672 12.2799 12.0290 11.4192	SEM of Free Energy /(kcal mol ⁻¹) 0.0000 0.0290 0.0687 0.1053 0.1306 0.1635 0.2103 0.2557 0.3076 0.3570					

Table S2. The values of CV, Free Energy Gradient and Free Energy, together with the standard derivation and standard error of the mean.

[†] Standard derivation (S.D.) of the free energy gradient, which is caused by the endogenic fluctuation from the thermal movement of all the molecules, especially solvent waters.
[‡] Standard error of the mean (SEM) of the free energy gradient, which is calculated from the S.D. divided by the square root of the number of samples. The longer the simulation time, the smaller SEM, indicating the more accurate free energy gradient.

Table S3. Convergence Test of the planewave cutoff (E_{cutoff} , unit in Ry) and relative cutoff (E_{relcut} , unit in Ry) in CP2k Package on the reaction energy difference of cellobiose hydrolysis (CB. hydro.) catalyzed by pure sulfuric acid (ΔE). The E_{cutoff} defines the planewave cutoff for the finest level of the multi-grid; the E_{relcut} controls which product Gaussians are mapped onto which level of the multi-grid. The ΔE is directly obtained by subtracting the relative energy of the two typical stable configurations before and after the reaction. These stable configurations are obtained by the annealing of 3 ps from the AIMD trajectory followed by geometry optimization. The typical 3D configurations of reactant and product are shown in Fig. 4e.

E_{cutoff} Test (E_{relcut} = 60 Ry)										
CB hydro	E _{cutoff} = 300	E _{cutoff} = 350	F . "=400 Rv	E _{cutoff} = 500	E_{cutoff} = 600					
CD. Hydro.	Ry	Ry		Ry	Ry					
Reactant	-4775.573132	-4776.022207	-4776.797743	-4777.724001	-4778.511249					
Product	-4775.554023	-4776.002702	-4776.777418	-4777.703727	-4778.490893					
ΔΕ	11.99	12.24	12.75	12.72	12.77					
		E _{relcut} Test (I	E _{cutoff} = 400 Ry)							
CB. hydro.	E _{relcut} = 40 Ry	E _{relcut} = 50 Ry	E _{relcut} = 60 Ry	E _{relcut} = 70 Ry	E _{relcut} = 80 Ry					
Reactant	-4776.798215	-4776.797741	-4776.797743	-4776.797740	-4776.797740					
Product	-4776.778318	-4776.777581	-4776.777418	-4776.777580	-4776.777580					
• -										

Table S4. Convergence Test of the statistic time on free energy and free energy gradient. $T_{statistic}$ is the statistic time to get the free energy gradient and free energy curve. The trajectories of the first 2 ps before the statistic not used to make the system to reach the equilibrium. The number fellows the "±" sign represents the standard error of the mean (SEM) of the free energy gradient or free energy, which decreases a lot with the increase of simulation time.

 Free Energy Curve (kcal mol ⁻¹)								
 CV: d _{oc} -d _{он} (Å)	T _{statistic} = 2.5 ps	T _{statistic} = 5.0 ps	T _{statistic} = 7.5 ps	T _{statistic} = 10.0 ps				
 -1.110	0.00±0.00	0.00±0.00	0.00±0.00	0.00±0.00				
-0.656	-0.17±0.05	-0.05±0.04	-0.01±0.03	-0.03±0.03				

-0.202	1.89±0.12	2.00±0.09	2.05±0.08	2.00±0.07						
0.252	9.90±0.19	10.42±0.14	10.54±0.12	10.72±0.11						
0.706	12.85±0.25	13.08±0.18	12.99±0.15	13.13±0.13						
1.160	13.13±0.31	13.46±0.23	13.77±0.19	13.99±0.16						
1.614	13.36±0.42	13.84±0.30	14.04±0.25	13.97±0.21						
2.068	11.20±0.50	11.58±0.37	12.06±0.30	12.28±0.26						
2.522	10.79±0.60	11.42±0.44	11.92±0.36	12.03±0.31						
2.976	11.11±0.71	11.31±0.51	11.50±0.42	11.42±0.36						
3.430	11.56±0.84	11.64±0.59	11.86±0.49	11.69±0.41						
Free Energy Gradient (kcal mol ⁻¹ Å ⁻¹)										
 СV: d _{oc} -d _{он} (Å)	T _{statistic} = 2.5 ps	T _{statistic} = 5.0 ps	T _{statistic} = 7.5 ps	T _{statistic} = 10.0 ps						
-1.110	3.14±0.10	2.33±0.08	1.67±0.07	1.83±0.06						
-1.110 -0.656	3.14±0.10 -0.39±0.17	2.33±0.08 -0.11±0.13	1.67±0.07 -0.03±0.10	1.83±0.06 -0.07±0.09						
-1.110 -0.656 -0.202	3.14±0.10 -0.39±0.17 4.55±0.15	2.33±0.08 -0.11±0.13 4.51±0.10	1.67±0.07 -0.03±0.10 4.54±0.09	1.83±0.06 -0.07±0.09 4.49±0.08						
-1.110 -0.656 -0.202 0.252	3.14±0.10 -0.39±0.17 4.55±0.15 17.64±0.13	2.33±0.08 -0.11±0.13 4.51±0.10 18.54±0.08	1.67±0.07 -0.03±0.10 4.54±0.09 18.72±0.07	1.83±0.06 -0.07±0.09 4.49±0.08 19.20±0.06						
-1.110 -0.656 -0.202 0.252 0.706	3.14 ± 0.10 -0.39±0.17 4.55 ± 0.15 17.64±0.13 6.50 ± 0.15	2.33±0.08 -0.11±0.13 4.51±0.10 18.54±0.08 5.86±0.11	1.67±0.07 -0.03±0.10 4.54±0.09 18.72±0.07 5.39±0.09	1.83±0.06 -0.07±0.09 4.49±0.08 19.20±0.06 5.30±0.07						
-1.110 -0.656 -0.202 0.252 0.706 1.160	3.14 ± 0.10 - 0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23	2.33 ± 0.08 -0.11±0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16	1.67 ± 0.07 -0.03 ± 0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12	1.83 ± 0.06 -0.07±0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10						
-1.110 -0.656 -0.202 0.252 0.706 1.160 1.614	3.14 ± 0.10 - 0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23 0.50 ± 0.19	2.33 ± 0.08 -0.11±0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16 0.84 ± 0.15	1.67 ± 0.07 -0.03±0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12 0.60 ± 0.12	1.83 ± 0.06 -0.07±0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10 -0.05±0.10						
-1.110 -0.656 -0.202 0.252 0.706 1.160 1.614 2.068	3.14 ± 0.10 - 0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23 0.50 ± 0.19 - 4.75 ± 0.22	2.33 ± 0.08 -0.11±0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16 0.84 ± 0.15 -4.98±0.16	1.67 ± 0.07 -0.03±0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12 0.60 ± 0.12 -4.36±0.13	1.83 ± 0.06 -0.07 ± 0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10 -0.05 ± 0.10 -3.72 ± 0.11						
-1.110 -0.656 -0.202 0.252 0.706 1.160 1.614 2.068 2.522	3.14 ± 0.10 - 0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23 0.50 ± 0.19 - 4.75 ± 0.22 - 0.90 ± 0.24	2.33 ± 0.08 -0.11±0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16 0.84 ± 0.15 -4.98±0.16 -0.36±0.16	1.67 ± 0.07 - 0.03 ± 0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12 0.60 ± 0.12 - 4.36 ± 0.13 - 0.31 ± 0.13	1.83 ± 0.06 -0.07 ± 0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10 -0.05 ± 0.10 -3.72 ± 0.11 -0.55 ± 0.11						
-1.110 -0.656 -0.202 0.252 0.706 1.160 1.614 2.068 2.522 2.976	3.14 ± 0.10 -0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23 0.50 ± 0.19 -4.75 ± 0.22 -0.90 ± 0.24 0.69 ± 0.28	2.33 ± 0.08 - 0.11 ± 0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16 0.84 ± 0.15 -4.98 ± 0.16 -0.36 ± 0.16 -0.24 ± 0.19	1.67 ± 0.07 - 0.03 ± 0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12 0.60 ± 0.12 -4.36 ± 0.13 -0.31 ± 0.13 -0.93 ± 0.15	1.83 ± 0.06 -0.07 ± 0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10 -0.05 ± 0.10 -3.72 ± 0.11 -0.55 ± 0.11 -1.34 ± 0.13						
-1.110 -0.656 -0.202 0.252 0.706 1.160 1.614 2.068 2.522 2.976 3.430	3.14 ± 0.10 - 0.39 ± 0.17 4.55 ± 0.15 17.64 ± 0.13 6.50 ± 0.15 0.62 ± 0.23 0.50 ± 0.19 -4.75 ± 0.22 -0.90 ± 0.24 0.69 ± 0.28 0.99 ± 0.24	2.33 ± 0.08 - 0.11 ± 0.13 4.51 ± 0.10 18.54 ± 0.08 5.86 ± 0.11 0.84 ± 0.16 0.84 ± 0.15 -4.98 ± 0.16 -0.36 ± 0.16 -0.24 ± 0.19 0.72 ± 0.18	1.67 ± 0.07 - 0.03 ± 0.10 4.54 ± 0.09 18.72 ± 0.07 5.39 ± 0.09 1.71 ± 0.12 0.60 ± 0.12 -4.36 ± 0.13 -0.31 ± 0.13 -0.93 ± 0.15 0.79 ± 0.14	1.83 ± 0.06 -0.07 ± 0.09 4.49 ± 0.08 19.20 ± 0.06 5.30 ± 0.07 1.89 ± 0.10 -0.05 ± 0.10 -3.72 ± 0.11 -0.55 ± 0.11 -1.34 ± 0.13 0.59 ± 0.12						

Table S5. Test calculation on the commonly used pure GGA functional. D3 represents the Grimme's D3 correction on dispersion interaction. The reaction energy (ΔE) of cellobiose hydrolysis (CB. hydro.) catalyzed by pure sulfuric acid is calculated, which is obtained by directly subtracting the relative energy of the two stable configurations before and after the reaction. These stable configurations are obtained by the annealing of 3 ps from the AIMD

CB. hydro.	PBE	PBE+D3	revPBE+D3	BLYP+D3
Reactant	-4775.713253	-4776.797743	-4781.522921	-4771.964150
Product	-4775.698875	-4776.777418	-4781.501870	-4771.932198
ΔΕ	9.02	12.75	13.21	20.05

trajectory followed by geometry optimization. The typical 3D configurations of reactant and product are shown in Fig. 4e.

Table S6. The comparison on the integral directions during the calculation of free energy curve. Integrate from reactant to product vs. integrate from product to reactant.

CV:	Integrate from Reacta	nt to Product	Integrate from Product	to Reactant
d _{oc} -d _{oн} (Å)	Relative Free Energy	SEM	Relative Free Energy	SEM
	(kcal mol ⁻¹)			
-1.11	0.0000	0.0000	-11.6871	0.4388
-0.66	-0.0319	0.0290	-11.7190	0.3991
-0.20	2.0048	0.0687	-9.6823	0.3625
0.25	10.7235	0.1053	-0.9636	0.3372
0.71	13.1303	0.1306	1.4432	0.3043
1.16	13.9894	0.1635	2.3023	0.2575
1.61	13.9672	0.2103	2.2801	0.2121
2.07	12.2799	0.2557	0.5929	0.1602
2.52	12.0290	0.3076	0.3419	0.1108
2.98	11.4192	0.3570	-0.2679	0.0532
3.43	11.6871	0.4146	0.0000	0.0000
Barrier	13.9894	0.1635	13.9894	0.6963

Equations derived from Kamlet-Taft method for calculating the parameters of π^* and β

Reference:

[1] Aryafard, M., et al., Experimental and Theoretical Studies of Preferential Solvation of 4-Nitroaniline and 4-Nitroanisole in an Amino Acid Ionic Liquid with Molecular Solvents. Journal of Chemical & Engineering Data, 2019. 64(12).

[2] Khupse, N.D. and A. Kumar, Delineating solute-solvent interactions in binary mixtures of ionic liquids in molecular solvents and preferential solvation approach. Journal of Physical Chemistry B, 2011. 115(4): p. 711-8.

Based on the references above, the equations for calculating the π^* and β are as followings:

$$v_0 = 34.17(kK)$$
 (1)

$$s = -2.410$$
 (2)

$$v_{\max(ANS)} = v_0 + S\pi^* (v = 1 / \lambda^* 10000)$$
 (3)

$$\beta = (31.10 - 3.14\pi^* - \nu_{\max(ANI)})/2.79 \tag{4}$$