Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Synergetic effect of Cu active sites and oxygen vacancies in Cu/CeO₂-ZrO₂

for water-gas shift reaction

Yuanwu Hu, Na Wang, Zhiming Zhou*

School of Chemical Engineering

East China University of Science and Technology

Shanghai 200237, China

* Corresponding author: zmzhou@ecust.edu.cn; Tel.: +86-21-64252230; Fax: +86-21-64253528.

Catalyst	CO conversion (%)				TOF^{a} (s ⁻¹)			
	240 °C	260 °C	280 °C	300 °C	240 °C	260 °C	280 °C	300 °C
20CuCe	2.2	3.9	5.9	8.2	0.0087	0.0155	0.0234	0.0325
20CuCe _{0.8} Zr _{0.2}	3.5	6.5	8.9	12.1	0.0069	0.0128	0.0175	0.0238
20CuCe _{0.6} Zr _{0.4}	4.8	7.5	11.3	14.9	0.0061	0.0095	0.0144	0.0189
20CuCe _{0.4} Zr _{0.6}	3.9	6.3	9.1	12.9	0.0055	0.0089	0.0128	0.0182
20CuCe _{0.2} Zr _{0.8}	1.6	2.5	4.1	5.9	0.0062	0.0096	0.0158	0.0227
20CuZr	0.1	0.3	0.5	0.7	0.0021	0.0047	0.0079	0.0113

Table S1 CO conversion and turnover frequency (TOF) data of different 20CuCe_yZr_{1-y^a}

^{*a*} Reaction condition: H_2 :CO: H_2 O = 1:2:2 (molar ratio), P = 0.1 MPa, GHSV = 80000 h⁻¹.

Table S2 Raman analysis results for spent 20CuCe_yZr_{1-y}

Catalyst	$N (\text{cm}^{-3})^a$
20CuCe	2.1×10^{21}
20CuCe _{0.8} Zr _{0.2}	3.9×10 ²¹
20CuCe _{0.6} Zr _{0.4}	5.5×10 ²¹
20CuCe _{0.4} Zr _{0.6}	4.2×10 ²¹
20CuCe _{0.2} Zr _{0.8}	1.6×10 ²¹
20CuZr	_

^a Concentration of oxygen vacancies (N) is acquired by Raman analysis.

Fig. S1. H₂-TPR profiles of CeO₂ and ZrO₂.

Fig. S2. Variation of Ce^{3+}/Ce^{4+} , Cu_r/Cu^{2+} and O_d/O_l ratios with Ce/(Ce+Zr) molar ratio for $20CuCe_yZr_{1-y}$ catalysts (symbols: experimental data; lines: fitted data by Gaussian function).

Fig. S3. Raman spectra of $20CuCe_yZr_{1-y}$ catalysts (HWHM is indicated by the thick solid black line).

Fig. S4. Variation of CO conversion with temperature over $20CuCe_yZr_{1-y}$ catalysts. (reaction condition: H₂:CO:H₂O = 1:2:2 (molar ratio), P = 0.1 MPa, GHSV = 20000 h⁻¹)

Fig. S5. HRTEM-EDS mappings of 50CuCe_{0.6}Zr_{0.4}.

Fig. S6. XRD patterns of xCuCe_{0.6}Zr_{0.4} catalysts with varying Cu loading.

Fig. S7. H_2 -TPR profiles of *x*CuCe_{0.6}Zr_{0.4} catalysts with varying Cu loading.

Fig. S8. XPS spectra of O 1s of xCuCe_{0.6}Zr_{0.4} catalysts with varying Cu loading.

Fig. S9. FESEM (left) and HRTEM (right) images of 60 h-used $50CuCe_{0.6}Zr_{0.4}$. (reaction condition: H₂:CO:H₂O = 1:2:2 (molar ratio), T = 350 °C, P = 0.1 MPa, GHSV = 20000 h⁻¹)