Pre-carbonized nitrogen-rich polytriazines for the controlled growth of silver

nanoparticles: catalysts for enhanced CO₂ chemical conversion at atmospheric

pressure

Jian Liu^{a,*}, Xiaoyi Zhang^a, Bingyan Wen^a, Yipei Li^a, Jingjing Wu^a, Zhipeng Wang^a, Ting Wu^a, Rusong, Zhao^{b,c}, Shenghong Yang^{b,*}

^aInstitute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.

^bShandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.

^cKey Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

*Corresponding author.

E-mail: jianliu18@jxnu.edu.cn; zhaors1976@126.com; yangsh@qlu.edu.cn.

Section 1: Characterization data of polytriazines and Ag@polytriazines2
Section 2: Catalysis performance for the carboxylation of terminal alkynes
Section 3: Characterization data of products······11

Section 4: NMR sp	ectral copies of	products1	13

Section 1: Characterization data of polytriazines and Ag@polytriazines

Scheme S1. Synthetic route of typical p-CTFs-250. primary amino groups (-NH₂) were decomposed or condensed.

Figure S1. FT-IR spectra of melamine, cyanuric chloride, and CTFs.

The successful formation of CTFs was first confirmed using FT-IR spectroscopy in Figure S1. It showed a representative peak for C–NH–C stretching vibration (1351 cm⁻¹) in CTFs along with the absence of the band for C–Cl stretching vibration in cyanuric chloride (854 cm⁻¹), indicating that two triazine rings were coupled by –NH– through HCl molecule removal. The peak at 814 cm⁻¹ is attributed to the deformation

vibrations of the triazine ring [1]. Only a broadband at 3410 cm⁻¹ region in CTFs, instead of multiple bands for melamine, is related to the N–H (C–NH–C/ C–NH₂) in condensed copolymers [2]. Similarly, the broad band at 1553 cm⁻¹ belongs to the coupling vibration between C=N and N–H, which is different from the C=N stretching vibration at 1549 cm⁻¹ and the –NH₂ bending vibration at 1653 cm⁻¹ in melamine [3].

Figure S3. XRD spectra of CTFs and p-CTFs-x.

Figure S4. XPS spectra of CTFs and CTFs-T.

Fable S1 . Chemical compositions and nitrog	en functional groups fron	n XPS data of CTFs and	p-CTFs-x.
--	---------------------------	------------------------	-----------

	Elemental analysis (wt%)				at.% of total N1s			
Samples	С	N	H	O and	-C=N-	-C-NH-	N-(C)3	π - π * satellite
				other elements		$-C-NH_2$		
CTFs	34.73	58.98	4.74	1.55	35.5	60.2	0	4.3
p-CTFs-200	35.78	58.10	4.46	1.66	36.0	59.4	0	4.6
p-CTFs-250	37.52	56.95	4.43	1.10	36.6	58.3	0	5.1
p-CTFs-300	38.19	56.24	4.42	1.15	43.7	50.4	0	5.9
p-CTFs-350	39.61	55.65	3.77	0.97	42.4	39.4	10.6	7.6

Determination of the vanishing of -NH₂ groups in polytriazines

Diazotization reaction: mixture of polytriazine (0.75 ml, 0.5 mg ml⁻¹), NaNO₂ (0.75 ml, 1 mg ml⁻¹), and H_2SO_4 (0.75 ml, 0.1 M) was stirred 1 h at 0 °C. Then Na₂B₄O₇-NaOH buffer solution (3 ml, 0.08 M-0.12M)) and α -naphthol (0.75 ml, 1 mg ml⁻¹) were added quickly and incubated 30 min at 50 °C. The suspensions were used directly for fluorescence detection. ($E_x = 340$ nm, $E_m = 466$ nm) Controlled experiments were conducted by replacing NaNO₂ with equal volume of H₂O.

Figure S5. (a) the fluorescence spectra of α -naphthol in different polytriazine conditions with NaNO₂ (solid lines) or without NaNO₂ (dashed lines). (b) the corresponding intensity values (E_m = 466 nm) and the D-value of the intensities.

Diazotization reaction between the $-NH_2$ groups in polytriazines and NO_2^- in acidic medium will generate aryl diazonium salt, which will further couple with α -naphthol in basic medium (pH \approx 8.0) and enhance the fluorescence intensity of α -naphthol due to the electrophilicity of the aryl diazonium salt [4]. As shown in Figure S5, the fluorescence intensity of α -naphthol increased obviously in alkaline aqueous condition after CTFs treated with NO_2^- in acidic medium. The D-values of intensities were not further changed when polytriazines (p-CTFs-250 and p-CTFs-300) were introduced, indicating that no $-NH_2$ groups were remained there.

Materials	BET surfaces	CO ₂ up take at at 298 K and	CO ₂ sorption capacity in per	Ref.
	area (m ² g ⁻¹)	1 atm. (mg g ⁻¹)	unit BET surface area (mg m ⁻²)	
CTFs	667.7	61.9	0.093	
p-CTFs-200	615.7	65.0	0.106	
p-CTFs-250	532.5	74.1	0.139	
p-CTFs-300	416.7	40.2	0.096	This work
p-CTFs-350	83.2	23.3	0.280	
Ag@CTFs	575.6	55.6	0.097	
Ag@p-CTFs-250	455.0	63.5	0.140	
Ag@ p-CTFs-350	13.3	13.9	1.045	
3AM3CL	894	88	0.098	5
PAN-N2	1035	98.2	0.095	6
MIL-101	3083	96.8	0.031	7
РОР-Вур	1123	70	0.062	8
NENP-1-350	880	182	0.206	9
CTF-DEC	1355	165	0.121	10
IISERP-COF	1230	96.5	0.078	11
Ag/PCNF-600	96	32.406	0.338	12
KAPS-Py	199	47.725	0.239	13
MIL-100(Fe)	1828	63.83	0.035	14
ZIF-8	1670	37.4	0.022	15

Table S2. BET surface area and CO2 sorption capacityof polytriazines and other porous materials.

Figure S6. SEM images of (a) Ag@CTFs, (b) Ag@p-CTFs-250, (c) Ag@p-CTFs-350.

Figure S7. FT-IR spectra of Ag@CTFs, Ag@p-CTFs-250, and Ag@p-CTFs-350.

Section 2: Catalysis performance for the carboxylation of terminal alkynes

Table S3.	Comparison	with previous	s reported catalys	ts for 3-phenyl	propiolic acid	l from CO ₂ and 1-
-----------	------------	---------------	--------------------	-----------------	----------------	-------------------------------

ethynylbenzene.						
Entr	y Catalyst	CO ₂ pressure (atm)	Runs	Yield(%) ^b	Ref.	
1	AgI	15	-	92	16	
2	Ag@P-NHC	1	5	98	17	
3	Ag(I)	1	-	91	18	
4	-	2.5	-	95	19	
5	Ag@MIL-101	1	5	96.5	7	
6	rare-earth metal complex	es 1	-	94	20	
7	Ag_2WO_4	1	-	96	21	
8	AgNPs@Co-MOF	1	6	96	22	
9	Ag ₂ O/NHC	1	-	98	23	

10	Ag@MIL-100(Fe)	1	5	94.6	14
11	Ag@UIO-66(Zr)	1	5	98.7	14
12	Ag/Schiff-SiO ₂	1	-	98	24
13	Ag/KAPs-P	1	5	92	13
14	CTF-DCE-Ag	1	-	90.2	10
15	Ag ⁰ @CTFN	1	6	97	25
16	Ag@NOMP	1	5	96	26
17	Ag/PCNF-T	1	5	90	12
18	UiO-66@UiO-67-BPY-Ag	1	5	96	27
19	TBAA- CH ₃ CN(no metal)	10	-	85	28
20	Ag@PHNCT	1	5	98	29
21	Ag@p-CTFs-250	1	5	96	This work

Reference

- T. Komatsu, Attempted chemical synthesis of graphite-like carbon nitride, J. Mater. Chem. 11 (2001) 799-801.
- [2] S.M. Lyth, Y. Nabae, S. Moriya, S. Kuroki, M.A. Kakimoto, J.I. Ozaki, S. Miyata, Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J. Phys. Chem. C 113 (2009) 20148-20151.
- [3] Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti, X. Wang, Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution, J. Mater. Chem. 21 (2011) 13032–13039.
- [4] K.J. Johnston, A.E. Ashford, A simultaneous-coupling azo dye method for the quantitative assay of esterase using α-naphthyl acetate as substrate, Histochem. J. 12 (1980), 221-234.
- [5] S.C. Qi, J.K. Wu, J. Lu, G.X. Yu, R.R. Zhu, Y. Liu, X.Q. Liu, L.B. Sun, Underlying mechanism of CO₂ adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO₂ chiefly through acid–base interaction? J. Mater. Chem. A 7 (2019) 17842-17853.
- [6] G. Li, X. Zhou, Z. Wang, Highly nitrogen-rich microporous polyaminals using N, N-dimethylformamide and formamide as the starting monomers for CO₂ adsorption and separation, J. Phys. Chem. C 124 (2020) 3087-3094.
- [7] X.H. Liu, J.G. Ma, Z. Niu, G. M. Yang, P. Cheng, An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure, Angew. Chem. Int. Ed. 54 (2015) 988-991.
- [8] Z. Dai, Q. Sun, X. Liu, L. Guo, J. Li, S. Pan, C. Bian, L. Wang, Xin. Hu, X. Meng, L .Zhao, F. Deng, F.S. Xiao, A hierarchical bipyridine-constructed framework for highly efficient carbon dioxide capture and catalytic conversion, ChemSusChem 10 (2017) 1186-1192.
- [9] M. Chaudhary, P. Mohanty, Pre-carbonization: an efficient route to improve the textural and gas sorption properties of nitrogen-enriched nanoporous polytriazine, ChemNanoMa 6 (2020) 113-117.
- [10] Q.Q. Dang, C.Y. Liu, X.M. Wang, X.M. Zhang, Novel covalent triazine framework for highperformance CO₂ capture and alkyne carboxylation reaction, ACS Appl. Mater. Interfaces 10 (2018) 27972-27978.

- [11] D. Chakraborty, P. Shekhar, H.D. Singh, R. Kushwaha, C.P. Vinod, R. Vaidhyanathan, Ag nanoparticles supported on a resorcinol-phenylenediamine-based covalent organic framework for chemical fixation of CO₂, Chem. Asian J. 14 (2019) 4767-4773.
- [12] X. Lan, Y. Li, C. Du, T. She, Q. Li, G. Bai, Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO₂ conversion, Chem. Eur. J. 25 (2019) 8560-8569.
- [13] Z. Wu, Q. Liu, X. Yang, X. Ye, H. Duan, J. Zhang, Bo. Zhao, Y. Huang, Knitting aryl network polymersincorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO₂ as carboxylic acid, ACS Sustainable Chem. Eng. 5(2017) 9634-9639.
- [14] N.N. Zhu, X.H. Liu, T. Li, J.G. Ma, P. Cheng, G.M. Yang, Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions, Inorg. Chem. 56 (2017) 3414-3420.
- [15] J. Shi, L. Zhang, N. Sun, D. Hu, Q. Shen, F. Mao, Q. Gao, W. Wei, Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO₂ in mild conditions, ACS Appl. Mater. Interfaces 11 (2019) 28858-28867.
- [16] X. Zhang, W.Z. Zhang, X. Ren, L.L. Zhang, X.B. Lu, Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO₂, Org.Lett. 13 (2011) 2402-2405.
- [17] D. Yu, M.X. Tan, Y. Zhang, Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles, Adv. Synth. Catal. 354(2012) 969-974.
- [18] M. Arndt, E. Risto, T. Krause, L. Gooßen, C-H carboxylation of terminal alkynes catalyzed by low loadings of silver(I)/DMSO at ambient CO₂ pressure, ChemCatChem. 4 (2012) 484-487.
- [19] D. Y. Yu, Y.G. Zhang, The direct carboxylation of terminal alkynes with carbon dioxide, Green Chem. 13 (2011) 1275-1279.
- [20] M.X. Tan, L.Q. Gu, N.N. Li, J.Y. Ying, Y.G. Zhang, Mesoporous poly-melamine-formaldehyde (mPMF) – a highly efficient catalyst for chemoselective acetalization of aldehydes, Green Chem. 15 (2013) 1127-1132.
- [21] L.H. Yang, H.M. Wang, Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes, ChemSusChem. 7 (2014) 962-998.
- [22] X.H. Liu, J.G. Ma, Z. Niu, G.M. Yang, P. Cheng, An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure, Angew. Chem. Int. Ed. 53 (2014) 1-5.
- [23] H. Cheng, B. Zhao, Y. Yao, C. Lu, Carboxylation of terminal alkynes with carbon dioxide catalyzed by bridged bis(amidate) rare-earth metal amides, Green Chem. (2014).
- [24] C.X. Guo, B. Yu, J.N. Xie, L.N. He, Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO₂ in ambient conditions, Green Chem. 17 (2015) 474-479.
- [25] M. Cui, Q. Qian, Z. He, J. Ma, X. Kang, J. Hu, Z. Liu, B. Han, Synthesizing Ag nanoparticles of small size on a hierarchical porosity support for the carboxylative cyclization of propargyl alcohols with CO₂ under ambient conditions, Chem. Eur. J. 21 (2015) 15924-15928.
- [26] Y. Zhang, D.S. Lim, Synergistic carbon dioxide capture and conversion in porous materials, ChemSus Chem. 8 (2015) 2606-2608.
- [27] R.A. Molla, K. Ghosh, B. Banerjee, M.A. Iqubal, S.K. Kundu, S.M. Islam, A. Bhaumik, Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure, J. Colloid Interface Sci. 477 (2016) 220-229.
- [28] Y. Yuan, C. Chen, C. Zeng, B. Mousavi, S. Chaemchuen, F. Verpoort, Carboxylation of terminal alkynes

with carbon dioxide catalyzed by an in situ Ag_2O/N -heterocyclic carbone precursor system, ChemCatChem 9 (2017) 882-887.

- [29] N.N. Zhu, X.H. Liu, T. Li, J.G. Ma, P. Cheng, G.M. Yang, Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions, Inorg. Chem. 56 (2017) 3414-3420.
- [30] Z. Wu, L. Sun, Q. Liu, X. Yang, X. Ye, Y. Hu, Y. Huang, A schiff base-modified silver catalyst for efficient fixation of CO₂ as carboxylic acid at ambient pressure, Green Chem. 19 (2017) 2080-2085.
- [31] Z. Wu, Q. Liu, X. Yang, X. Ye, H. Duan, J. Zhang, B. Zhao, Y. Huang, Knitting aryl network polymersincorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO₂ as carboxylic acid, ACS Sustainable Chem. Eng. 5 (2017) 9634-9639.
- [32] Q.Q. Dang, C.Y. Liu, X.M. Wang, X.M. Zhang, Novel covalent triazine framework for highperformance CO₂ capture and alkyne carboxylation reaction, ACS Appl. Mater. Interfaces. 10 (2018) 27972-27978.
- [33] X. Lan, C. Du, L. Cao, T. She, Y. Li, G. Bai, Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO₂ conversion, ACS Appl. Mater. Interfaces. 10 (2018) 38953-38962.
- [34] W. Zhang, Y. Mei, X. Huang, P. Wu, H. Wu, M. He, Size-controlled growth of silver nanoparticles onto functionalized ordered mesoporous polymers for efficient CO₂ upgrading, ACS Appl. Mater. Interfaces 11 (2019) 44241-44248.
- [35] X. Lan, Y. Li, C. Du, T. She, Q. Li, G. Bai, Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO₂ conversion, Chem. Eur. J. 25 (2019) 8560-8569.
- [36] Y. Gong, Y. Yuan, C. Chen, P. Zhang, J. Wang, S. Zhuiykov, S. Chaemchuen, F. Verpoort, Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation, J. Catal. 371 (2019) 106-115.
- [37] D.J. Shah, A.S. Sharma, A.P. Shah, V.S. Sharma, M. Athar, J.Y. Soni, Fixation of CO₂ as a carboxylic acid precursor by microcrystalline cellulose (MCC) supported Ag NPs: a more efficient, sustainable, biodegradable and eco-friendly catalyst, New J. Chem. 43 (2019) 8669-8676.
- [38] W.H. Wang, X. Feng, K. Sui, D. Fang, M. Bao, Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: synthesis of propiolic acids, J. CO₂ UTIL. 32 (2019) 140-145.
- [39] X. Lan, Q. Li, L. Cao, C. Du, L. Ricardez-Sandoval, G. Bai, Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: a highly efficient catalyst for CO₂ conversion, Appl. Surf. Sci. 508 (2020) 145220.

Section 3: Characterization data of products

Compound 1: White solid; ¹H NMR (400 MHz, CDCl₃) *δ* (ppm): 10.11 (br, s, 1H, –COOH), 7.60–7.62 (m, 2H, Ar-H), 7.46–7.50 (m, 1H, Ar-H), 7.37–7.41 (m, 2H, Ar-H); ¹³C NMR (100 MHz, CDCl₃) *δ*(ppm): 157.98 (–COOH), 132.97, 130.88, 128.39, 118.74, 88.55, 79.85.

Compound **2**: White solid; ¹H NMR (400 MHz, CDCl₃) *δ* (ppm): 10.07 (br, s, 1H, –COOH), 7.47–7.56 (m, 2H, Ar-H), 7.16–7.25 (m, 2H, Ar-H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) *δ* (ppm): 154.09 (–COOH), 132.97, 130.61, 128.54, 119.55, 86.05, 80.62, 14.07.

Compound **3**: White solid; ¹H NMR (400 MHz, CDCl₃) *δ* (ppm): 8.61 (br, s, 1H, –COOH), 7.34–7.36 (m, 2H, Ar-H), 7.20–7.21 (m, 2H, Ar-H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) *δ* (ppm): 138.38 (–COOH), 133.66, 131.94, 130.31, 128.42, 118.77, 89.09, 79.82, 21.05.

Compound 4: White solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.51–7.53 (m, 2H, Ar-H), 7.18–7.20 (m, 2H, Ar-H), 2.61 (t, *J* = 7.6 Hz, 2H), 1.28–1.60 (m, 6H), 0.87 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 158.19 (–COOH), 146.95, 133.41, 128.70, 115.88, 89.72, 79.64, 36.17, 31.42, 30.71, 22.36, 13.95.

Compound **5**: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.57–7.61 (m, 2H, Ar-H), 7.01–7.04 (m, 2H, Ar-H), 3.82 (s, 3H), 3.40 (br, s, 1H, –COOH); ¹³C NMR (100 MHz, *d*-DMSO) δ (ppm): 161.58 (–COOH), 154.94, 135.01, 115.19, 113.70, 85.63, 81.52, 55.53.

Compound **6**: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.61–7.65 (m, 2H, Ar-H), 7.08–7.13 (m, 2H, Ar-H), 6.58 (br, s, 1H, –COOH); ¹³C NMR (100 MHz, *d*-DMSO) δ (ppm): 162.54 (–COOH), 154.80, 135.92, 117.09, 115.93, 83.93, 82.08.

Compound 7: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.67-7.61 (m, 1H, Ar-H), 7.62–7.58 (m, 2H, Ar-H), 7.58-7.47 (m, 1H, Ar-H); ¹³C NMR (100 MHz, *d*-DMSO) δ (ppm): 154.17 (–COOH), 133.53,

131.52, 130.23, 120.77, 87.19, 85.61.

Compound **8**: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.52-7.57 (m, 2H, Ar-H), 7.46-7.50 (m, 2H, Ar-H), 3.39 (br, s, 1H, –COOH); ¹³C NMR (100 MHz, *d*-DMSO): δ (ppm): 154.73 (–COOH), 134.96, 132.67, 125.20, 118.74, 83.55, 83.25.

Compound **9**: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.72-7.63 (m, 1H, Ar-H), 7.62-7.61 (m, 2H, Ar- H), 7.60-7.49 (m, 1H, Ar-H), 3.31 (br, s, 1H, –COOH); ¹³C NMR (100 MHz, *d*-DMSO): δ (ppm): 154.43 (–COOH), 153.91, 136.27, 134.09, 132.26, 121.45, 118.34, 83.51, 82.74.

Compound **10**: White solid; ¹H NMR (400 MHz, *d*-DMSO) δ (ppm): 7.78-7.66 (m, 1H, Ar-H), 7.64 (m, 1H, Ar-H), 7.60-7.59 (m, 1H, Ar-H), 7.57-7.47 (m, 1H, Ar-H); ¹³C NMR (100 MHz, *d*-DMSO): 154.55 (-COOH), 136.23, 135.17, 132.89, 130.15, 128.14, 119.54, 86.53, 80.97.

Compound **11**: Yellow solid; ¹H NMR (400 MHz, CDCl₃) *δ* (ppm): 8.86 (br, s, 1H, –COOH), 7.52-7.56 (m, 2H, Ar-H), 7.07–7.10 (m, 1H, Ar-H); ¹³C NMR (100 MHz, CDCl₃) *δ* (ppm): 158.10 (–COOH), 137.37, 133.82, 132.02, 127.67, 84.48, 82.93.

$${}^{n}C_{5}H_{11} = \langle OH \rangle$$

Compound **12**: ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.92 (br, s, 1H, -COOH), 2.35 (t, 6.8 Hz, 2H, CH₂), 1.63-1.59 (m, 2H, CH₂), 1.44-1.31 (m, 4H, CH₂), 0.93 (m, 6.4 , 3H, CH₃) ; ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 157.12 (-COOH), 91.36, 73.27, 32.1, 31.13, 22.27, 18.88, 14.04.

Compound **13**: ¹H NMR (400 MHz, CDCl₃) *δ* (ppm): 7.64 (br, s, 1H, -COOH), 1.31 (s, 9H, CH₃); ¹³C NMR (100 MHz, CDCl₃) *δ* (ppm): 157.57 (-COOH), 98.78, 71.73, 30.08, 27.82.

Section 4: NMR spectral copies of products

Compound 4

2.633 2.595 2.514 2.514 2.514 1.595 1.595 1.595 1.1.595 1.1.297 1.1.287 0.873 0.855 0.855

