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Characterization

FTIR spectra were recorded using a Bruker Tensor 27 FTIR spectrophotometer and the conventional 

KBr disk method; 32 scans were collected at a spectral resolution of 4 cm–1; the films used in this 

study were sufficiently thin to obey the Beer–Lambert law. DSC analyses were performed using a 

TA Q-20 DSC apparatus; all samples were placed in hermetic Al pans with lids and heated from 40 

to 350 °C at a heating rate of 20 °C min–1 under a N2 flow rate of 50 mL min–1. Wide-angle X-ray 

diffraction (WAXD) patterns were recorded using the wiggler beamline BL17A1 of the National 

Synchrotron Radiation Research Center (NSRRC), Taiwan; a triangular bent Si (111) single crystal 

was used to obtain a monochromated beam having a wavelength (λ) of 1.33 Å. A triangular bent Si 

(111) single crystal was used to obtain a monochromated beam having a wavelength (λ) of 1.33 Å. 

Cross-polarization with MAS (CP/MAS) was used to acquire 13C NMR spectral data at 75.5 MHz. 

The CP contact time was 2 ms; 1H decoupling was applied during data acquisition. The decoupling 

frequency corresponded to 32 kHz. The MAS sample spinning rate was 10 kHz. TEM images were 

recorded using a JEOL JEM-2010 instrument operated at 200 kV. FE-SEM was conducted using a 

JEOL JSM7610F scanning electron microscope; samples were subjected to Pt sputtering for 100 s 

prior to observation. BET surface area and porosimetry measurements of the prepared samples (ca. 

40–100 mg) were performed using BEL MasterTM and BEL simTM (v. 3.0.0). Nitrogen isotherms were 

generated through incremental exposure to ultrahigh-purity N2 (up to ca. 1 atm) in a liquid N2 bath 

(77 K). Surface parameters were determined using BET adsorption models in the instrument’s 

software. TGA was performed using a TA Q-50 analyzer under a flow of N2; the samples were sealed 
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in a Pt cell and heated from 40 to 800 °C at a heating rate of 20 °C min–1 under a N2 flow of 60 mL 

min–1. UV–Vis spectra were recorded at 25 °C using a Jasco V-570 spectrometer, with EtOH as the 

solvent. 
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Scheme S1. Synthesis of Py-Br4, Py-TMS and Py-T.
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Scheme S2. Synthesis of F-Br2.
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Scheme S3. Synthesis of TPA-Br3.
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Scheme S4. Synthesis of TPE and TPE-Br4.
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Scheme S5. Synthesis of Py-F-CMP.
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Scheme S6. Synthesis of Py-TPA-CMP.
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Scheme S7. Synthesis of Py-TPE-CMP.
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e S1. FT-IR spectrum of Py-Br4.
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Figure S2. FT-IR spectrum of Py-TMS.



13

12 10 8 6 4 2 0

c

b

a

Chemical shift (ppm)

a

bc

Si

SiSi

Si

CDCl3

Figure S3. 1H NMR spectrum of Py-TMS.
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Figure S4. 13C NMR spectrum of Py-TMS.
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Figure S5. FT-IR spectrum of Py-T.
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Figure S6. 1H NMR spectrum of Py-T.
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Figure S7. 13C NMR spectrum of Py-T.
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Figure S8. DSC profile of F-Br2.
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Figure S9. FT-IR spectrum of F-Br2.
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Figure S10. 1H NMR spectrum of F-Br2.
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Figure S11. 13C NMR spectrum of F-Br2.
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Figure S12. DSC profile of TPA-Br3.
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Figure S13. FT-IR spectrum of TPA-Br3.
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Figure S14. 1H NMR spectrum of TPA-Br3.
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Figure S15. 13C NMR spectrum of TPA-Br3.
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Figure S16. DSC profile of TPE.
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Figure S17. FT-IR spectrum of TPE.
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Figure S18. 1H NMR spectrum of TPE.
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Figure S19. 13C NMR spectrum of TPE.
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Figure S20. DSC profile of TPE-Br4.
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Figure S21. FT-IR spectrum of TPE-Br4.
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Figure S22. 1H NMR spectrum of TPE-Br4.
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Figure S23.13C NMR spectrum of TPE-Br4.
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Figure S24. XRD profile of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP.
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Figure 25. SEM images of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP.
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Figure S26. HOMO profiles of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP.
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Figure S27. Control experiments for light-driven hydrogen generation from water at ambient 

temperature using (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP.
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Figure S28. The excited states of the Py-F-CMP and the contribution of the transition between 

orbitals (the percentage on the arrow). 
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Figure S29. The excited states of the Py-TPA-CMP and the contribution of the transition between 

orbitals (the percentage on the arrow). 
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Figure S30. The excited states of the Py-TPE-CMP and the contribution of the transition between 

orbitals (the percentage on the arrow).
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Figure S31. (a) and (b) Stability and recycling test using Py-TPA-CMP and Py-TPE-CMP as a 

photocatalyst under visible light irridation (λ > 420 nm).
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Figure S32. FTIR profiles of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP after 

photocatalysts measurements.
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Figure S33. UV-Vis absorption spectra of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP 

before photocatalysts measurements, and (d) Py-F-CMP, (e) Py-TPA-CMP and (f) Py-TPE-CMP 

after photocatalysts measurements.
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Figure 34. SEM images of (a) Py-F-CMP, (b) Py-TPA-CMP and (c) Py-TPE-CMP after 

photocatalysts measurements.

 .
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Table S1. Comparative studies of our designed pyrene-based microporous polymers with the reported 
CMPs in terms of photocatalytic hydrogen evolution.

Polymer 
Catalysts

HER
 > 420 nm
(µmol h-1)

HER
 > 420 nm
(µmol h-1g-

1)

AQY %
λ > 420 
nm

Conditions References

COP-TP0:1
COP-TP3:1

9
42

900
4200

----
1.5

Water/TEOA
/ 3 wt% Pt S1

L-PyBT
P-PyDFBT

P-PyBT
P-PyDFBT

83.7
20.9
0.3
1.5

1674
418
6
30

---- Water/TEOA
/ 3 wt% Pt S2

P1 50 ---- 3.85 Water/TEOA
/ 3 wt% Pt S3

Ta‐CMP
Ta‐CMP‐N

Ta‐CMP‐CN

9.74
1.98
13.96

487
99
698

0.12
0.07
0.15

Water/TEOA S4

4-CzPN ---- 2103.2 6.4 Water/TEOA
/ 3 wt% Pt S5

CP1
CP2
CP3
CP4

95.85
1.25
0.47
1.03

15975
208
78
172

----
----
----
----

Water/AA 
/DMF S6

TFPT-CH3
TFPT-PDAN
TFPT-OCH3

4.4
11.8
22.1

----
----
----

---
---

1.03

Water/TEOA
/ 3 wt% Pt S7

S-CMP3 ---- 3,106 13.2
Water/ 

MeOH/TEO
A

S8

P1
P2
P3
P4

50
0.9
22
1.3

1000
18
440
26

----
----
1.4
----

Water/TEOA
/ 3 wt% Pt S9

PyDF
PyDM

---
---

13470
1,280

4.5
-

Water/TEOA
/ 3 wt% Pt S10

Py-TPA-CMP 
Py-TPE-CMP 

Py-F-CMP

57.5
39.1
16.8

19200
13033
5600

15.3
6.3
2.3

Water/ 
MeOH/AA/  

3 wt% Pt
This work
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